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1 Introduction

The Chainlink Offchain Reporting Protocol (OCR) is a Byzantine fault tolerant distributed protocol run amongst
a network of n oracles (or nodes). The protocol repeatedly gathers observations from participating oracles and
aggregates them into consensus outcomes. From each outcome, multiple reports are derived and attested by
a quorum of oracles (through their signatures). The attested reports are then transmitted by the oracles to an
oracle smart contact C, running on a blockchain, which could be Ethereum or any other blockchain which
supports smart contracts. The contract validates the reports and exposes their contents to consuming contracts.

The Offchain Reporting Protocol can execute many different kinds of functions through reporting plugins.
A reporting plugin is a stateful object, implementing functions that define how individual oracles make ob-
servations, how the observations are aggregated into an outcome, how the outcome is converted into a report,
whether the report should be transmitted to C, and more. For a given instance of the protocol, all oracles are
assumed to run the same reporting plugin. Whenever we mention observations, aggregate outcomes, and re-
ports in this document, they are meant in the generic sense, without taking into account their specific meaning
in the context of a reporting-plugin implementation. The logic of each reporting plugin is executed offchain
on the oracles participating in the protocol. The smart contract C is the onchain counterpart of the reporting
plugin. Its logic is executed onchain.

By way of (imperfect) analogy, consider the programming model of MapReduce [DG04] with its separation
between logic expressed in terms of map and reduce functions and a runtime executing these functions without
having to be aware of what data is being mapped and reduced. Similarly, for the Offchain Reporting Protocol,
logic is expressed following the structure of the reporting plugin interface and the protocol acts as a distributed,
Byzantine fault tolerant runtime for that logic without being aware of what is being observed, aggregated, and
transmitted.

Major protocol versions. The first version of the protocol, OCR1, was released in February 2021 and is
documented in Version 1.2 of this document. OCR1 is specific to data feeds and its implementation only
targets Ethereum-compatible blockchains. The next version of the protocol, OCR2, generalized the design of
the protocol, so that it may collect and report not only numerical values (from an ordered set), but more general
kinds of data.

This version, OCR3, strengthens the protocol with replicated state and ensures a total order among the
reports it produces. Thanks to OCR3’s optimistic responsiveness and focus on latency minimization, real-world
production deployments of this protocol achieve end-to-end latencies in the low hundreds of milliseconds over
the Internet. Moreover, OCR3’s support for batched report generation improves report throughput versus OCR2
by three orders of magnitude (1000x).

In the rest of the document, for simplicity, we will use the acronym OCR to refer to Offchain Reporting
Protocol version 3.0.

*Authors are listed in alphabetical order.
†The author is a faculty member at University of Bern. He co-authored this work in his separate capacity as an advisor to Chainlink

Labs.
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2 Design goals

At a high level, the design should achieve the following goals.

Security & reliability: The protocol and its implementation should be resilient to different kinds of failures.
Oracles may become Byzantine out of malice or due to buggy code. The chosen security model limits
only the number of faulty oracles, not the types of faults. The design should be simple to implement in a
real-world system.

Low transaction fees: Communication between the oracles and computation performed by the oracles hap-
pens offchain and is therefore (almost) free. In contrast, communication with C, and computation per-
formed by it, require transactions on the blockchain, and are many orders of magnitude more expensive.
For example, a single Ethereum transaction can easily cost tens or hundreds of dollars. We thus aim to
minimize transaction fees, even if this results in protocol with higher offchain computation and network-
ing requirements.

Low latency: Oracles should provide data as fresh as possible. The design minimizes the delay between
observations being made and transmission of the corresponding attested report, as well as the delay
incurred by generation of new outcomes that causally depend on the previous outcome. One of the main
ways in which we achieve this is by making the protocol responsive and reducing the number of network
trips, since network latency is the dominant constituent of protocol latency in the WAN settings in which
the protocol operates.

Flexibility: The protocol should act as a common foundation on top of which many different use cases can
be built by configuring the protocol appropriately and “plugging in” use case specific logic through the
reporting plugin and oracle contract. Implementers should not need to be familiar with the internals of
the protocol, but only with the reporting plugin interface.

3 Model

Oracles. The system consists of a set P = {p1, . . . , pn} of n nodes, to which we refer as oracles, and the
oracle contract C. The oracles may send messages to each other over a network and are identified by their
network endpoints, i.e., a certificate on their cryptographic key material, which allows them to authenticate to
each other.

The set of oracles is determined by a configuration smart contract, which might be the same as contract C.
The configuration contract also maintains the public keys of all participating oracles and makes these keys
available to all. Each oracle pi, through the reporting plugin, makes time-varying observations of a value, such
as a price.

Failures. Any f < n/3 oracles may exhibit Byzantine faults, which means that they may behave arbitrarily
and as if controlled by an imaginary adversary. All nonfaulty oracles are called correct.

For stating formal security guarantees, these faults may occur adaptively, where the adversary can choose
the faulty nodes on the fly. Once faulty, a node remains faulty for the purpose of the model for the entire
duration of the protocol. It is expected that the protocol operates with n = 3f + 1, since this gives optimal
resilience.

In principle, the failure assumption also covers network failures and crashes, which may or may not be
adversarially introduced. This assumption also means that no more than f nodes may become isolated from the
network or crash. This is a weakness of the model, in that it does not cover, for instance, software errors which
take down the whole network at once due to a malformed message.

We also permit benign faults of nodes in the following sense: An otherwise correct node may crash and
become unresponsive for some time, or it may become unreachable from some or all other correct nodes (as
if during a network partition). When the node resumes operation after recovering, it restores some state from
local persistent storage and will participate in the protocol again correctly. A benign fault is transient.
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With this refined model, which is only used informally, we want to achieve the following. If f oracles are
Byzantine-faulty and c oracles are benign-faulty with f < n/3 but f + c ≥ n/3 at any point in time during the
protocol execution, then: (a) the protocol may lose liveness, but (b) must always satisfy the safety properties.

To support this refined model and thereby increase the resilience against crashes, some local state is always
maintained in persistent storage. We will explicitly mention the variables for which this is the case.

Oracle smart contract and reports. The protocol repeatedly produces reports, with the goal of having them
recorded on a blockchain by the smart contract C.

A configurable number of observations are aggregated into a sequenced outcome by a Byzantine fault-
tolerant (BFT) quorum of oracles, i.e., a set of ⌈n+f+1

2 ⌉ nodes. This ensures that outcomes are sequenced
consistently across all correct oracles. Reports are derived from the aggregated outcomes as defined by the
reporting plugin implementation. Each report is signed by f +1 oracles to guarantee that it is signed by at least
one correct oracle. The report is then submitted to C which, in turn, verifies the signatures, validates the report,
records which oracles contributed, and stores the consolidated report on the blockchain. The contributing
oracles receive a payout.

Cryptographic primitives. The protocol uses public-key digital signatures, pseudorandom functions (PRF),
and cryptographic hash functions.

Digital signatures are implemented using standard elliptic-curve-based schemes; at least EdDSA and ECDSA
are used, depending on context and the target blockchain. A protocol-internal digital signature is implemented
by two operations, signi(m) and verifyj(m,σ). A call to signi must be executed by pi, takes a bit string m as
input, and returns a signature σ. The operation verifyj takes a string m and a potential signature σ as inputs and
returns a Boolean. The implementation satisfies that verifyi(σ,m) returns TRUE on any correct oracle if and
only if pi has executed signi(m) and obtained σ before, except with negligible probability. The EdDSA scheme
is typically used for this purpose. Attestations use a separate digital signature scheme with different keys; the
respective operations are denoted by signAttesti(m) and verifyAttestj(m,σ). The attestation-signature scheme
satisfies the same properties as the internal signatures and is typically implemented by ECDSA.

A cryptographic pseudorandom function (PRF) may be implemented by HMAC-SHA256 or by Keccak256
with prepending the key to the message. Formally, the PRF Fx maps strings of arbitrary length to strings of
fixed length, and x is a secret key called the seed. The outputs of Fx cannot be efficiently distinguished from
random bit strings by anyone who does not know the secret key.

SHA256 is used as a cryptographic collision-free hash function. Invoking it on a string s of arbitrary length
is denoted by H(s); this returns a fixed-length bit string. It is computationally infeasible to find collisions in
H , i.e., no adversary can find s and s′ ̸= s such that H(s) = H(s′) with non-negligible probability.

Timing model. We align the timing and network model with the partially synchronous model [DLS88] but
make some simplifying choices.

Formally, partial synchrony means that the network is asynchronous and the clocks of the nodes are not
synchronized up to some point called global stabilization time (GST). After GST, the network behaves syn-
chronously, no oracle crashes, the clocks behave synchronously, and all messages between correct nodes are
delivered within some bounded delay ∆, and this remains so for the remainder of the protocol execution. In
practice, a protocol may alternate multiple times between asynchronous and synchronous periods. Liveness is
only ensured for periods of synchrony.

As a pragmatic choice and in contrast to the formal model, the maximal communication delay ∆ is a
constant configured into the protocol. A discussion of the timeout values used in the implementation is given
in Section 6.6.

Network assumptions. The oracles may send point-to-point messages to each other over a network. All
message transmissions are authenticated and encrypted, that is, each oracle can authenticate every other oracle
based on the list of oracles as determined by the configuration contract on the blockchain.

Messages exchanged between correct oracles are always delivered in the same order in which they were
sent, i.e., the protocol uses FIFO order message delivery. Protocols are described modularly through multiple
algorithms that operate concurrently on one oracle. Arriving messages addressed to a particular algorithm are
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also processed in the same sequence in which they are received. (The FIFO-order guarantee does not hold
across algorithm instances.)

It is possible for a network partition to temporarily isolate a large number of nodes. Such partitions can
model node crashes and eventual reboots as well. However, since nodes repeatedly try to send messages, all
messages among correct nodes get through eventually, once any impeding network asynchrony passes.

The communication is implemented by one mutually authenticated TLS connection over the Internet for
each pair of nodes. Messages sent among correct nodes are therefore delivered according to the reliable-
delivery semantics of TCP. A node additionally maintains buffers for sending messages over the links and
may store incoming messages in buffers until the protocol is ready to process them. These buffers have finite
capacity and may therefore become full. In this case, the node drops messages that do not fit in a buffer. Hence,
also correct but slow nodes may behave as if they have crashed when they drop messages (this behavior has
also been called an omission fault). In the sense of the formal model, nodes that drop messages are treated as
Byzantine.

Parts of the protocol contain explicit logic for resending messages. The other protocols transmit their point-
to-point messages as described.

Notation. We give a semi-formal description of the protocol using an event-based notation, as used in the
standard literature [CGR11, Chap. 1]. A protocol is written in terms of a list of upon-handlers, which may
respond to events or to conditions on the protocol’s internal state. Handlers are executed atomically, i.e., in a
serializable and mutually exclusive way, per protocol instance and per node such that no two handler executions
of the same instance interleave.

A protocol instance communicates with other instances running on the same oracle through events, which
are triggered by

invoke event example-event(arg1, arg2, · · · ) .

For each triggered event, a handler of the form

upon event example-event(arg1, arg2, · · · ) do

is executed once. Events between two protocol instances executing on the same node are handled in the same
order in which they were triggered (i.e., in FIFO order). The execution is otherwise asynchronous, which means
that the invoking protocol may only obtain output from an invoked protocol instance via further events.

Sending a message to a protocol instance running on another oracle pj is triggered by

send message [EXAMPLE-MESSAGE, arg1, arg2, · · ·] to pj .

Messages also trigger events on a destination node, denoted

upon receiving message [EXAMPLE-MESSAGE, arg1, arg2, · · ·] from pj ,

which let the protocol handle a message from oracle pj .
We make frequent use of broadcasts where an instance sends a message to all instances including itself :

send message [EXAMPLE-MESSAGE, arg1, arg2, · · ·] to all pj ∈ P

We make use of timers throughout the protocol description. Timers are created in a stopped state. After
being started, a timer times out once and then stops. A timer can be (re)started arbitrarily many times. Restarting
an already running timer is the same as stopping it and then starting it afresh. Stopping a timer is idempotent.

Finally, we make use of an event scheduler. It is accessed through the command

schedule event example-event(arg1, arg2, · · · ) after time-period .

which schedules the event example-event to be invoked once time-period of time has elapsed, starting from the
moment of the invocation.
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Figure 1. Architecture of the Offchain Reporting Protocol, Version 3.0.

4 Overview

The overall goal of the Chainlink Offchain Reporting Protocol is to periodically send reports to the contract C,
which runs on a blockchain such as Ethereum. The reporting process is configurable through reporting plug-
ins, of which each may provide its own semantics. The protocol is structured into four modular algorithms,
called pacemaker, (atomic) outcome generation, report attestation, and transmission. All four protocols run
continuously and concurrently to each other and are grouped as shown in Figure 1.

In a nutshell, the (atomic) outcome generation protocol is a leader-based protocol which executes in rounds.
In each round, it attempts to aggregate observations into outcomes, based on a query and the previous outcome,
such that each outcome is assigned a unique sequence number and the sequence of outcomes is contiguous.
Every oracle computes this sequence locally, but a minority of the correct oracles may skip one or more out-
comes in particular situations. Taking into account these potential omissions, the protocol ensures an “atomic”
or total order among the outcomes that it generates at the correct oracles. In other words, it provides a service
that comes close to total-order broadcast (which is often called consensus in the context of blockchains), but
does not fully meet all guarantees of the latter.

The pacemaker ensures that the outcome generation protocol makes progress, even in case of a faulty leader
or a network partition. It achieves this by rotating the outcome generation protocol leader through a succession
of epochs such that all oracles are guaranteed to eventually be in the same epoch long enough to make progress.

The report attestation protocol converts aggregate outcomes into reports, according to the reporting plugin
implementation, gathers signatures (an attestation) on the reports and hands the attested reports to the transmis-
sion protocol, which in turn sends the attested reports to C.

Pacemaker. The pacemaker protocol ensures the progress of the outcome generation protocol. The out-
come generation protocol is structured into epochs and, in each epoch, a designated oracle acts as leader to
drive the aggregation of observations into sequenced outcomes, similar to related protocols for consensus like
PBFT [CL02] and HotStuff [Yin+19]. All oracles operate as followers.

The pacemaker protocol runs continuously and periodically initiates a new epoch within the outcome gener-
ation protocol. The pacemaker protocol instructs outcome generation to start a new epoch with a newEpochStart
event. This occurs in two cases.

The first case is when the epoch has run for a ρ rounds with the same epoch leader. To balance load and
trust, the leader should then change, and the outcome generation protocol emits a newEpochReq event, to which
the pacemaker responds.

The second case occurs when the pacemaker protocol does not observe sufficient progress by the outcome
generation protocol. To monitor this, the pacemaker receives progress events from outcome generation. Every
oracle runs a timer Tprogress with timeout duration ∆progress that serves to watch the epoch leader’s performance;
every progress event resets that timer. When Tprogress expires, the oracle concludes that the current leader is not
performing correctly. The oracle then moves to initiate a new epoch with a different leader.

The outcome generation protocol also invokes newEpochReq events when the leader stays silent at the
beginning of a new epoch for more than ∆initial time.

In this way, the pacemaker protocol observes the progress of the current epoch within the outcome gen-
eration protocol only through progress events. Thus, ∆progress and ∆initial need not depend on the worst-case
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transaction confirmation time on the blockchain.

Atomic outcome generation. The outcome generation protocol operates in epochs, and each epoch is de-
noted by a unique identifier e and associated to a leader node pℓ. Within each epoch, the protocol proceeds in
rounds. In each round, the protocol gathers observations and, if conditions for going forward are met, generates
an aggregate outcome, which it commits to a monotonically increasing sequence number, denoted by sn, using
a PBFT message pattern [CL02].

The pace of round progress is controlled by the leader through a timeout ∆round, triggered by the leader.
It controls the minimum period of time the leader waits to start a successive round. The latency required to
complete one round of the aggregation protocol during periods of synchrony and the value of ∆round plus a
safety margin must both be lower than ∆progress.

Once a sufficient number of observations are aggregated into an outcome and the outcome has been commit-
ted to a sequence number, the outcome is handed over to the report attestation protocol. The outcome generation
protocol ensures that no two distinct correct oracles commit different outcomes to the same sequence number
within and across epochs. Every outcome is committed by at least ⌈n+f+1

2 ⌉ − f ≥ f + 1 correct oracles, but
not necessarily by all of them. Therefore, for each committed outcome, there exists at least one correct oracle
that invokes the report attestation protocol with the same outcomes in the same order.

In principle, the contract C may verify that a report is valid. For preventing, however, unnecessary trans-
missions for invalid reports, the outcome may encode information on whether it converts into valid reports. The
validity conditions depend on the implementation of the reporting plugin.

Report attestation. The report attestation protocol runs continuously and is responsible for gathering signa-
tures on the reports that are derived. When a report is signed by f + 1 oracles, it is called attested. The report
attestation protocol passes the attested reports to the transmission protocol which, in turn, transmits them to C.
The contract C may verify the validity of a report by verifying the report attestation. An attestation of f + 1
signatures ensures that at least one correct oracle invoked the report attestation protocol with the outcome from
which the report is derived and, therefore, the report satisfies the validity conditions specified in the plugin
implementation as well as the safety properties guaranteed by the outcome generation protocol.

Transmission. The transmission protocol encapsulates the steps performed locally by each oracle for sending
attested reports to C. Unlike the above algorithms, the transmission protocol does not involve any communi-
cation among the oracles. The transmission protocol delays each oracle by a pseudorandomly chosen waiting
time to ensure a staged sending process. This aims at preventing that too many copies of the same report are
sent off simultaneously to C in fault-free cases. This saves cost because C must process all reports it receives,
even if only to discard them due to being outdated or duplicated.

5 Reporting plugin

A reporting plugin makes the Offchain Reporting Protocol configurable for multiple different purposes. The
plugin abstracts the data that is reported by the offchain network and contains all functions for processing and
filtering them. An example is the one for reporting numerical values, which is briefly described at the end of
this section and in more detail in Section 7.

The functions are summarized in Algorithm 1 and consist of one function executed only by the outcome
generation protocol leader, two processing functions executed by all oracles as followers in the outcome gener-
ation protocol, one processing function executed by all oracles in the report attestation protocol, one validation
function for observations, two validation functions for reports, and a quorum size configuration function.

The query(Oprev, sn) function is only run by the leader of the outcome generation protocol and determines
a query Q, which is then sent to the followers, optionally based on the previous report Oprev. It may contain
specific information on what data the followers should observe in the current round.

For gathering the actual data of the observation, the oracles invoke observation(Oprev, sn, Q) . It simply
returns an opaque value v. It may be thought of as a simple number or as a complex data structure. A number
of observation-quorum(Oprev, sn, Q) signed observation values are needed to generate an outcome.
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Algorithm 1 Interface of a reporting plugin
state

// A reporting plugin gets to define its own state that the various functions can access and modify.

function query(Oprev, sn)
// Executed only by the epoch leader.
// Provides a useful coordination mechanism in case there are many possible things that could be “observed.”
// Produces a query that is sent to the followers.

function observation(Oprev, sn, Q)

// Produces an observation for sequence number sn.
// The observation may depend on the query Q and/or on the previous outcome Oprev.
// Returns an observation.

function valid-observation(Oprev, sn, Q, v)

// Validity conditions may depend on the query Q and/or on the previous outcome Oprev.
// Returns TRUE if the observed value v satisfies specific to the plugin validity conditions, FALSE otherwise.

function observation-quorum(Oprev, sn, Q)

// Returns the number of observations needed to build a report.
// This number may depend on the query Q and/or on the previous outcome Oprev.

function outcome(Oprev, sn, Q,B)

// Given the query Q and the previous outcome Oprev, aggregates the vector of observations B for sequence
// number sn according to an aggregation policy. Must be deterministic.
// Returns the aggregated outcome.

function reports(sn, O)

// Used by the report attestation protocol to transform the outcome O to a variable-length vector of reports.
// Returns a vector of reports.

function should-accept-attested-report(a)
// Used by the transmission protocol to decide whether an attested report should be accepted.
// This is invoked after a report has been attested.
// Returns a Boolean.

function should-transmit-accepted-report(a)
// Used by the transmission protocol to decide whether an attested report should be sent to C.
// This is invoked just before transmission potentially takes place.
// Returns a Boolean.

The valid-observation(Oprev, sn, Q, v) function determines whether the observation value v is valid. The
leader uses this function to filter out invalid observations such that it sends a number of observation-quorum(Oprev, sn, Q)

valid observations to the followers, if available. Followers use the function to verify the validity of the obser-
vations that they receive form the leader.

Each follower uses the deterministic function outcome(Oprev, sn, Q,B) , which is specific to a query Q
and may depend on the previous outcome Oprev, to aggregate a list B of values observed by different oracles to
an outcome O.

The reports(sn, O) function is used by the report attestation protocol to transform the previously computed
outcome O into a vector (variable-length array) of reports, such that the report attestation protocol collects
signatures on all reports.

Finally, two filtering functions should-accept-attested-report(a) and should-transmit-accepted-report(a)
are used by the transmission protocol for reducing the number of reports that are unnecessarily transmitted to
contract C. Their parameter is an attested report a. For example, they can ensure that a report is not transmitted
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when C has already obtained another report that was produced more recently.
For reasoning about the progress of the configurable reporting protocol, we assume that every function of a

reporting plugin returns within ∆process time units.
Notice that all functions receive a sequence number sn, either explicitly or implicitly as part of an attested

report (a). The details of how these functions are invoked are explained in Sections 6.3 and 6.5.

Reporting plugin for numerical values. The reporting plugin for numerical values produces reports that
collect numerical values representing different observations of the same offchain signal, such as a price feed.
We describe it in this document to provide a concrete example of a reporting plugin and also for continuity with
the first version of the Offchain Reporting Protocol which could only produce reports about numerical values.
This reporting plugin produces reports that represent the median value of more than 2f observations. More
information about this plugin appears in Section 7.

6 Protocol

6.1 Contract

Reports generated by the OCR protocol are transmitted to C for onchain processing. This makes the contract
the onchain counterpart to the offchain reporting plugin. Just like for the reporting plugin, the contract’s logic
depends on the purpose of the system being implemented.

The contract C also manages the configuration of the OCR protocol, that includes various configuration pa-
rameters and the set of participating oracles. This is required for the contract to check the authenticity of reports
by cryptographically verifying report attestations. The contract informs the oracles of updated configurations
by emitting events.

Reports contain the sequence number sn assigned by the atomic outcome generation protocol. More pre-
cisely, the plugin function reports(sn, O) is used to derive a report vector from an outcome O, where the
outcome generation protocol has committed sn to O. Every report is therefore associated with a tuple (sn, pos),
where pos denotes the position of the report in the vector of reports.

This enables the report processing logic in the contract to inspect the sequence number sn of a report. A
common pattern is for the contract to maintain a high-water mark of the greatest sequence number for which it
has processed a report and ignore any reports with lesser sequence numbers as stale.

6.2 Pacemaker

The pacemaker protocol in Algorithm 2 on p. 10 governs progression through epochs numbered in succession
1, 2, 3, . . . and the choice of the epoch leader. For each epoch, the outcome generation protocol in Algorithms 3–
6 produces up to ρ outcomes, at most one per round. If the outcome generation protocol does not produce an
outcome after ∆progress units of time from the beginning of the epoch or the previous outcome, the oracle
initiates a switch to the next epoch, and the corresponding next leader.

Description. Algorithm 2 is similar to the leader-detection algorithm specified by Cachin et al. [CGR11,
Module 2.10, p. 61] and implemented by Algorithm 2.10 (p. 62) there. Many of the arguments made for the
properties of that protocol carry over directly to this context. The algorithm is extended by means to tolerate
lossy links, such that messages sent between correct oracles do not need to be buffered. Similar methods have
recently been introduced in the literature [BCG20; NK24].

Every oracle pi maintains a local variable e, which denotes the epoch in which pi operates. Furthermore,
a variable ℓ denotes the leader oracle pℓ of the current epoch, derived from e as ℓ ← leader(e). The variable
ne tracks the highest epoch number the oracle has sent in a NEW-EPOCH-WISH message. These variables are
maintained on persistent storage.

The node broadcasts a NEW-EPOCH-WISH message containing ne every ∆resend seconds. This increases the
probability that relevant NEW-EPOCH-WISH messages get through, even if a message is dropped at some point.
It also helps for integrating crashed oracles back into the protocol after they have recovered.

8



The NEW-EPOCH-WISH message in Algorithm 2 basically plays the same role as the COMPLAINT message
in Alg. 2.10 [CGR11]. Here, incorrect behavior by the current leader pℓ is determined by oracle pi if pi has not
committed an outcome by timeout ∆progress.

The oracle stores the highest epochs received from all other oracles through NEW-EPOCH-WISH messages
in an array newEpochWishes. If an oracle receives more than f messages of the form [NEW-EPOCH-WISH, e′],
each one containing some e′ > e, it infers that at least one correct node wishes to progress to some epoch
ē higher than e. The node chooses ē as the (f + 1)-highest entry of newEpochWishes and sends out its own
[NEW-EPOCH-WISH, ē] message. Since it is assumed that at most f nodes are Byzantine, receiving a message
from more than f others implies that at least one correct node has earlier sent a [NEW-EPOCH-WISH, e′] message
with e′ ≥ ē.

This protocol differs from Alg. 2.10 [CGR11] in that ē is an arbitrary future epoch, not necessarily the
next epoch from the receiving oracle’s perspective. This allows the oracle to catch up if it misses messages
pertaining to an entire epoch or more. Recall that correct nodes may also exhibit benign faults and be offline
for some time. If f is close to n/3, this doesn’t matter too much, since the protocol will not actually advance
unless close to 2/3 of the nodes positively respond with NEW-EPOCH-WISH messages. For smaller f , though,
arbitrary delays could lead to multiple distinct perspectives on the current epoch.

The node continuously records the highest epoch numbers received from all others through NEW-EPOCH-WISH

messages. If a node observes 2f nodes wish to change to an epoch greater than e, the node switches to epoch ē,
where ē is the (2f+1)-highest entry of newEpochWishes. It then triggers a corresponding newEpochStart(ē, ℓ),
which will be picked up by the outcome generation protocol.

Because more than 2f nodes indicated epoch ē or greater, the node infers that more than f correct nodes
wish to switch to a later epoch. This, in turn, implies that every correct node will receive more than f
NEW-EPOCH-WISH messages as well, since a correct node will send this message to all others. Hence, all
correct nodes will eventually transmit a NEW-EPOCH-WISH message containing epoch at least ē, according to
the NEW-EPOCH-WISH amplification rule, and move to a new epoch ē outcome generation protocol.

Crashes and recoveries. At any time, some number c of nodes may exhibit benign faults and have crashed;
they eventually will recover and resume operations (otherwise, they count as Byzantine). We reason about
recovery from crashes solely in the context of Algorithm 2. When a node resumes after a crash, it restarts all
running algorithms and restores certain variables from persistent storage.

In the following, assume that there are no simultaneous Byzantine faults and consider these scenarios:

c ≤ f : When no more than f oracles have crashed, the protocol maintains liveness and progresses normally
(based on the assumption that there are no further Byzantine faults). When an oracle crashes in some
epoch e, it misses all messages sent until it recovers. Upon recovery, it will eventually receive more than
f NEW-EPOCH-WISH messages containing an epoch larger than ne (recall that ne is restored from per-
sistent storage upon recovery). This oracle will then rejoin the protocol by sending a NEW-EPOCH-WISH

message itself, denoting an epoch larger than ne.

c > f : During the time when more than f oracles have crashed, the protocol loses liveness. The pacemaker
protocol will resume operations successfully once n − f oracles are operating and more than f among
them send a NEW-EPOCH-WISH message with an epoch value of at least some e after recovery. This
ensures that, eventually, more than f oracles send their own NEW-EPOCH-WISH message with an epoch
of at least e and, in turn, all correct oracles announce epoch values e′ ≥ e. This implies that the correct
oracles eventually start epoch at least e.

In the rest of this paragraph, we argue informally why the pacemaker protocol is able to resume after the
crash and subsequent recovery of any number of correct nodes. A more formal argument appears in Section 8.

Observe first that the protocol ensures that for every correct oracle, the variable ne increases monotonically
and, likewise, no entry in newEpochWishes ever decreases. This follows directly from the protocol.

Furthermore, notice that ne ≥ e holds as well from the assignment to ne in the agreement rule and from the
preceding reasoning. And since e is determined from the entries of newEpochWishes that never decrease, also
e increases monotonically.

Consider now a point in time when all correct nodes have recovered, there are Byzantine-faulty nodes,
but the network timing has stabilized (i.e., a moment after GST). A stable situation also means that when
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Algorithm 2 Pacemaker protocol structured into epochs (executed by every oracle pi).
state

(e, ℓ)← (1, leader(1)): current epoch and leader
ne← e: highest epoch which pi has initialized, i.e., highest epoch for which it has sent a NEW-EPOCH-WISH message
newEpochWishes← [0]n: highest epoch received from pj in a NEW-EPOCH-WISH message
timer Tprogress with timeout duration ∆progress // leader must produce reports with this frequency, or be removed
timer Tresend with timeout duration ∆resend // controls resending of NEW-EPOCH-WISH messages

upon initialization do
invoke event newEpochStart(e, ℓ) // see outcome generation protocol in Alg. 3
start timer Tprogress

upon event progress do // the current leader is progressing with the outcome generation protocol (see Alg. 6)
restart timer Tprogress

upon event timeout from Tresend do // resend NEW-EPOCH-WISH message every ∆resend seconds
sendNewEpochWish ()

upon event timeout from Tprogress or event newEpochReq do // abort epoch because leader is too slow or tenure is over
stop timer Tprogress
ne← max{e+ 1, ne}
sendNewEpochWish ()

upon receiving a message [NEW-EPOCH-WISH, e′] from pj do
newEpochWishes[j]← max(e′, newEpochWishes[j])

upon
∣∣{pj ∈ P | newEpochWishes[j] > ne}

∣∣ ≥ f + 1 do // NEW-EPOCH-WISH amplification rule

ē← max
{
e′
∣∣∣∣∣{pj ∈ P | newEpochWishes[j] ≥ e′}

∣∣ ≥ f + 1
}

ne← max(ne, ē)
sendNewEpochWish ()

upon
∣∣{pj ∈ P | newEpochWishes[j] > e}

∣∣ ≥ 2f + 1 do // agreement rule

ē← max
{
e′
∣∣∣∣∣{pj ∈ P | newEpochWishes[j] ≥ e′}

∣∣ ≥ 2f + 1
}

(e, ℓ)←
(
ē, leader(ē)

)
ne← max{ne, e}
restart timer Tprogress
invoke event newEpochStart(e, ℓ) // see outcome generation protocol in Alg.3

function sendNewEpochWish()
send message [NEW-EPOCH-WISH, ne] to all pj ∈ P
restart timer Tresend
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the outcome generation protocol operates with a correct leader that has started the same epoch for all correct
oracles, outcomes (and progress events) are produced faster than ∆progress. Hence, no correct oracle times out
on Tprogress and initializes a further epoch like this. Moreover, oracles receive the first message of the epoch
from a correct leader in less time than ∆initial from the beginning of the epoch. Hence, no correct oracle times
out on Tinitial.

In this situation, correct oracles that have recovered may have missed arbitrarily many messages. Hence,
their locally highest epochs (stored in ne) may vary widely.

However, since all correct nodes resume the periodic transmission of NEW-EPOCH-WISH messages, every
correct node will soon receive n − f NEW-EPOCH-WISH messages and determine an epoch number ē in the
NEW-EPOCH-WISH amplification rule that is reported by more than f nodes. Notice that ē ≥ ne for the local
variable ne of at least one correct node pj . However, it may be that ē is larger than the highest epoch for which
any correct node has invoked a newEpochStart event.

Let ps be some node with the (f + 1)-largest value of the ne variables among the n− f correct nodes, and
let es denote this epoch number. According to the protocol, f + 1 or more correct oracles will repeatedly send
NEW-EPOCH-WISH messages containing an epoch value of at least es. Since these messages are sent by correct
oracles, every correct oracle will eventually have received at least f +1 such NEW-EPOCH-WISH messages and
send a NEW-EPOCH-WISH message with parameter es or higher as well.

This implies that every correct oracle eventually stores n − f > 2f entries in newEpochWishes that are
at least es. Hence, every correct oracle has either already invoked a newEpochStart event for epoch es or will
progress to epoch es and invoke a newEpochStart event for epoch es.

It remains to show that no correct oracle has yet progressed to some epoch e′ > es. This follows easily,
considering the monotonically increasing variables e and ne of each correct oracle: In order to progress to some
epoch e′ > es, a correct oracle would need more than 2f entries in newEpochWishes containing e′ or a higher
value. Hence, accounting for f values reported by faulty oracles, more than f correct oracles would have sent
NEW-EPOCH-WISH messages containing e′ or a larger value. However, the number of correct nodes whose ne
variable may exceed es and that might actually have sent NEW-EPOCH-WISH messages with parameter larger
than es is at most f , according to the definition of es. This is a contradiction and shows that such an e′ does not
exist.

The leader function. The function leader : N→ {1, . . . , n} maps epochs to leaders. It is important that it is
balanced in the sense that for any long interval of epochs, every oracle becomes leader approximately equally
often. It must be deterministic and computable by every oracle.

A trivial implementation is to set

leader(e) = (e mod n) + 1.

The ordering of the oracles is determined by the list in the configuration contract. If this order may be influenced
by the oracles (for example, when ordered by their identifying public keys), this may provide an opportunity
for a coalition of faulty oracles to arrange themselves consecutively, which could lead to long delays between
correct operations of the protocol.

We implement the leader function using a pseudorandom function (PRF) to avoid this risk. This has the
advantage that the leader sequence remains unpredictable to any observer outside the set of oracles, ensuring
that an external adversary cannot predict and attack the leader of a particular future epoch. We use the PRF to
calculate a random permutation π of {p1, . . . , pn} that applies to a span of n epochs. The leader of each epoch
i ∈ {1, . . . , n} in the span is π[i].

6.3 Atomic outcome generation

The outcome generation protocol proceeds in epochs, where each epoch consists of multiple rounds. We first
describe the protocol proceeds through the rounds within an epoch and then how it switches to another epoch.

6.3.1 Rounds of an epoch

All oracles start a new epoch e upon receiving a newEpochStart(e, ℓ) event, where ℓ identifies a dedicated
oracle which acts as epoch leader. All oracles, including the epoch leader, act as followers. Each epoch runs
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Algorithm 3 Atomic outcome generation protocol, executed by oracle pi (part 1)
state

(e, ℓ)← (1, leader(1)): current epoch and leader
sn← 0: the sequence number for the current round
query← ⊥: the query for the current round
prevOutcome← ⊥: the outcome committed to sequence number sn− 1
outcome← ⊥: the outcome for the current round
prepareMsgs← [⊥]n: a vector of received PREPARE messages for the current round per oracle ID
preparedSeqNo← 0: the highest sequence number with a prepared outcome
preparedOutcome← ⊥: the last prepared outcome
prepareQC← [⊥]n: the highest available quorum of PREPARE messages
firstSnOfEpoch← 0: connects sequence numbers to the round numbers of the current epoch
commitMsgs← [⊥]n: a vector of received COMMIT messages for the current round per oracle ID
committedSeqNo← 0: the highest sequence number with a committed outcome
committedOutcome← ⊥: the last committed outcome
commitQC← [⊥]n: the highest available quorum of COMMIT messages
phase← ⊥: denotes the phase in Φ as a follower within a round
timer Tinitial with timeout duration ∆initial, initially stopped

// state only updated by the epoch leader
timer Tround with timeout duration ∆round, initially stopped
timer Tgrace with timeout duration ∆grace, initially stopped
waited← TRUE: denotes whether the next round may start because Tround has expired
observations← [⊥]n: vector of observations received for the current round
newEpochReqMsgs← [FALSE]n: a vector indicating if a EPOCH-START-REQ message is received in the

current epoch per oracle ID
(highSn, highQCTag)← (0,⊥): a pair of highest sequence number from EPOCH-START-REQ messages

in the current epoch and corresponding PREPARE or COMMIT tag
highQC← [⊥]n: highest prepare- or commit-quorum certificate from EPOCH-START-REQ messages
highQCProof← [⊥]n: highest prepare- or commit-quorum certificate proof for the current epoch
leaderPhase← ⊥: denotes the phase in Λ as a leader within a round

upon event newEpochStart (e′, ℓ′) do
(e, ℓ)← (e′, ℓ′)
start timer Tinitial

if committedSeqNo < preparedSeqNo then
σ ← signi(EPOCH-START-REQ∥e∥preparedSeqNo∥PREPARE)
send message [EPOCH-START-REQ, e, PREPARE, preparedSeqNo, preparedOutcome, prepareQC, σ] to pℓ

else
σ ← signi(EPOCH-START-REQ∥e∥committedSeqNo∥COMMIT)
send message [EPOCH-START-REQ, e, COMMIT, committedSeqNo, committedOutcome, commitQC, σ] to pℓ

phase← NEW-EPOCH
if i = ℓ then // executed only by epoch leader pℓ

(highSn, highQCTag)← (0,⊥)
newEpochReqMsgs← [FALSE]n

highQC← [⊥]n
leaderPhase← NEW-EPOCH
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Algorithm 4 Atomic outcome generation protocol, executed by oracle pi (part 2)
upon receiving message [EPOCH-START-REQ, e′, qcTag, sn′, outcome′,QC, σ] from pj s.t.

i = ℓ ∧ e′ = e ∧ ¬newEpochReqMsgs[j] ∧ leaderPhase = NEW-EPOCH do // only epoch leader pℓ
newEpochReqMsgs[j]← TRUE
highCertOutcome← ⊥
if verifyj

(
EPOCH-START-REQ∥e∥sn′∥qcTag, σ

)
∧ validQC(sn′, outcome′, qcTag,QC) then

if sn′ > highSn then
(highSn, highQCTag)← (sn′, qcTag)
(highCertOutcome, highQC)← (outcome′,QC)

highQCProof[j]← (sn′, qcTag, σ)

if
∣∣∣{pj ∈ P∣∣newEpochReqMsgs[j]

}∣∣∣ = BQ(n, f) then
send message [EPOCH-START, e, highSn, highQCTag, highCertOutcome, highQC, highQCProof] to all pj ∈ P
if highQCTag = COMMIT then

leaderPhase← SENT-EPOCHSTART
else

leaderPhase← SENT-PROPOSAL

upon event timeout from Tinitial do
invoke event newEpochReq // see pacemaker protocol in Alg. 2

upon receiving message [EPOCH-START, e′, highSn′, qcTag, outcome′, highQC′, highQCProof′] from pℓ s.t.
e′ = e ∧ phase = NEW-EPOCH do

if
∣∣∣{pj ∈ P∣∣highQCProof′[j] = (sn′, tag, σ) ∧ sn′ ≤ highSn′ ∧ verifyj(EPOCH-START-REQ∥e∥sn′∥poc, σ)

}∣∣∣
≥ BQ(n, f) ∧ validQC(highSn′, outcome′, qcTag, highQC′) then

sn← highSn′

firstSnOfEpoch← sn + 1
outcome← outcome′

if qcTag = PREPARE then
σ ← signi(PREPARE∥e∥sn∥H(outcome))
send message [PREPARE, e, sn, σ] to all pj ∈ P
phase← SENT-PREPARE

else // qcTag = COMMIT
if sn > committedSeqNo then

committedSeqNo← sn
committedOutcome← outcome
commitQC← highQC′

invoke event committedOutcome(sn, (outcome, commitQC)) // see report att. protocol in Alg. 7–8
phase← NEW-ROUND

cancel timer Tinitial

function validQC (sn′, O, qcTag,QC)

return ∃? e′ s.t.
∣∣∣∣{pj ∈ P ∣∣∣QC[j] = [qcTag, e′, sn′, σ] ∧ verifyj

(
qcTag∥e′∥sn′∥H(O), σ

)}∣∣∣∣ ≥ BQ(n, f)

upon event timeout from Tround s.t. i = ℓ do // current round may be in any phase, executed only by epoch leader pℓ
waited← TRUE

upon waited ∧ i = ℓ // executed only by epoch leader pℓ
∧ (leaderPhase = SENT-EPOCHSTART ∨ leaderPhase = COMMITTED) do

query← query(highCertOutcome, sn + 1)

send message [ROUND-START, e, sn + 1, query] to all pj ∈ P
observations← [⊥]n
start timer Tround

leaderPhase← SENT-ROUNDSTART
waited← FALSE
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Algorithm 5 Atomic outcome generation protocol, executed by oracle pi (part 3)
upon receiving message [ROUND-START, e′, sn′, query′] from pℓ s.t.

e′ = e ∧ sn′ = sn + 1 ∧ phase = NEW-ROUND do
if sn′ − firstSnOfEpoch > ρ then // pℓ has exhausted its maximal number of rounds

invoke event newEpochReq // see pacemaker protocol in Alg. 2
return

query← query′

v ← observation(outcome, sn′, query′)
σ ← signi(OBSERVATION∥e∥sn + 1∥query′∥v)
send message [OBSERVATION, e, sn + 1, v, σ] to pℓ
(prepareMsgs, commitMsgs)←

(
[⊥]n, [⊥]n

)
phase← SENT-OBSERVATION

upon receiving message [OBSERVATION, e′, sn′, v, σ] from pj s.t. // executed only by epoch leader pℓ
e′ = e ∧ i = ℓ ∧ sn′ = sn + 1 ∧ observations[j] = ⊥ ∧ valid-observation(prevOutcome, sn′, query, v)
∧ verifyj(OBSERVATION∥e′∥sn + 1∥query∥v, σ) ∧ leaderPhase ∈ {SENT-ROUNDSTART, GRACE} do

observations[j]← (v, σ)

upon |{pj ∈ P|observations[j] ̸= ⊥}| = observation-quorum(prevOutcome, sn, query) ∧ i = ℓ
∧ leaderPhase = SENT-ROUNDSTART do // executed only by epoch leader pℓ

start timer Tgrace // grace period for slow oracles
leaderPhase← GRACE

upon event timeout from Tgrace s.t. i = ℓ ∧ leaderPhase = GRACE do // executed only by epoch leader pℓ
k ← 1 // collect observations in B and signatures in Σ
for pj ∈ P s.t. observations[j] ̸= ⊥ ∧ observations[j] = (v, σ) do

B[k]← (j, v)
Σ[k]← σ
k ← k + 1

send message [PROPOSAL, e, sn + 1, B,Σ] to all pj ∈ P
leaderPhase← SENT-PROPOSAL

upon receiving message [PROPOSAL, e′, sn′, B,Σ] from pℓ s.t.
e′ = e ∧ sn′ = sn + 1 ∧ phase = SENT-OBSERVATION do

K ← observation-quorum(prevOutcome, sn′, query)

if
∧K

k=1 B[k] ̸= ⊥ ∧B[k] = (j, v) ∧ valid-observation(prevOutcome, sn′, query, v)
∧ verifyj

(
OBSERVATION∥e∥sn + 1∥query∥v,Σ[k]

)
then

sn← sn′

prevOutcome← outcome
outcome← outcome(prevOutcome, sn, query, B) // outcome is deterministic
σ ← signi(PREPARE∥e∥sn∥H(outcome))
send message [PREPARE, e, sn, σ] to all pj ∈ P
phase← SENT-PREPARE

upon receiving message [PREPARE, e′, sn′, σ] from pj s.t. e′ = e ∧ sn′ = sn ∧ prepareMsgs[j] = ⊥
∧ verifyj

(
PREPARE∥e∥sn∥H(outcome), σ

)
∧ phase = SENT-PREPARE do

prepareMsgs[j]← [PREPARE, e, sn, σ]
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Algorithm 6 Atomic outcome generation protocol, executed by oracle pi (part 4)

upon
∣∣∣{pj ∈ P | prepareMsgs[j] ̸= ⊥

}∣∣∣ ≥ BQ(n, f) ∧ phase = SENT-PREPARE do
σ ← signi(COMMIT∥e∥sn∥H(outcome))
send message [COMMIT, e, sn, σ] to all pj ∈ P
phase← SENT-COMMIT
preparedSeqNo← sn
preparedOutcome← outcome
prepareQC← prepareMsgs

upon receiving message [COMMIT, e′, sn′, σ] from pj s.t. e′ = e ∧ sn′ = sn ∧ phase = SENT-COMMIT

∧ commitMsgs[j] = ⊥ ∧ verifyj
(

COMMIT∥e∥sn∥H(outcome), σ
)

do
commitMsgs[j]← [COMMIT, e, sn, σ]

upon
∣∣∣{pj ∈ P | commitMsgs[j] ̸= ⊥

}∣∣∣ ≥ BQ(n, f) ∧ phase = SENT-COMMIT do
phase← NEW-ROUND
if p = ℓ then

leaderPhase← COMMITTED
if sn > committedSeqNo then

committedSeqNo← sn
committedOutcome← outcome
commitQC← commitMsgs
invoke event committedOutcome(sn, (outcome, commitQC)) // see report attestation protocol in Alg. 7–8

invoke event progress // indicates leader is performing correctly, see pacemaker protocol in Alg. 2

function BQ (n, f )
return ⌈n+f+1

2 ⌉

until the pacemaker determines that the subsequent epoch should be started or until it has executed ρ rounds.
In each round all correct oracles should commit a single outcome O to a sequence number sn. Rounds

are executed consecutively; a correct oracle does not enter a new round before committing an outcome to a
sequence number for the previous round. Sequence numbers are contiguous and increase monotonically with
the rounds of an epoch. Moreover, the sequence number is maintained across epochs. The first round of an
epoch has a sequence number at least as high as the last round of some previous epoch(s).

Looking ahead, it will become clear that a minority of correct oracles, particularly those that have been
slow in previous epochs, may have jumped to this epoch without committing an outcome in the last rounds of
one (or more) previous epoch(s). Therefore, the sequence of committed outcomes at these oracles may contain
a gap. However, it is ensured that for every sequence number, a majority among the correct oracles commits
the outcome.

Every round is structured into phases. The epoch leader pℓ concurrently executes steps as the leader and as
a follower. The follower progress is controlled by a variable phase, as for all oracles, whereas the progress of
pℓ as a leader uses a variable leaderPhase.

The epoch’s time duration is controlled by the pacemaker protocol. We say that an oracle finishes an epoch
gracefully if it commits some outcome to a sequence number for all ρ rounds of the epoch, before the epoch
expires. Otherwise, we say that the oracle finishes the epoch ungracefully.

At the beginning of a new epoch e, all oracles send to pℓ an EPOCH-START-REQ message as followers to
inform the leader about their state in the previous epoch. The leader, upon receiving a BFT quorum, i.e., a
set with cardinality ⌈n+f+1

2 ⌉, of EPOCH-START-REQ messages sends a new-epoch quorum certificate (denoted
highQC) in a EPOCH-START message. The new epoch quorum certificate determines a sequence number snhigh
as well as an outcome OhighCert from some previous epoch that should be committed to sequence number snhigh.
The leader starts the epoch with sn = snhigh + 1. This guarantees the consistency of the outcome generation
protocol: if there exists some correct oracle which committed the outcome OhighCert to sequence number snhigh
in some epoch e′ < e, then no correct oracle commits a conflicting outcome to snhigh in epoch e′ or higher.
We defer the details of the EPOCH-START-REQ and EPOCH-START messages and the new-epoch certificate to
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Figure 2. The first round of the outcome generation protocol in a fault-free execution with p1 as epoch leader.
Subsequent rounds start with the ROUND-START and previous messages (grey) are skipped.

Section 6.3.2.
Moreover, all oracles start a timer Tinitial with duration ∆initial at the beginning of a new epoch. Upon

receiving a EPOCH-START message, an oracle cancels Tinitial. The timer’s duration ∆initial should be shorter
than ∆progress, as this allows oracles to terminate an epoch fast in case the leader is not responsive right at the
beginning of the epoch.

As the first step of each round, the leader sends a [ROUND-START, e, sn′, Q] message to all oracles, where e
is the current epoch and sn′ = sn+1 is the sequence number for which the leader wants to generate an outcome
in the current round. The variable sn is incremented only in a later phase of the round (after receiving the
PROPOSAL message). The query Q is stored in query during the remainder of the round. The leader obtains Q
by calling query(OhighCert, sn′) , where OhighCert denotes the most recently committed outcome as determined
by the leader, i.e., the outcome committed with sequence number sn′ − 1. For controlling the pace of the
protocol, the leader also starts a timer Tround that expires after ∆round.

An oracle pi accepts a message [ROUND-START, e′, sn′, Q] if it is currently in epoch e = e′ and has
committed an outcome for sequence number sn = sn′ − 1. Upon accepting the ROUND-START message,
pi enters the new round. It evaluates observation(Oprev, sn′, Q) , which returns an observation value vi that
may depend on the query Q and the previous outcome Oprev, Then, pi sends back to the leader the message
[OBSERVATION, e, sn′, vi, σi], where σi is pi’s signature on the OBSERVATION message and the query Q.

The leader waits for observation-quorum(Oprev, sn′, Q) valid OBSERVATION messages. An OBSERVATION

message sent by oracle pi for sequence number sn′ is considered valid if it contains a valid signature σi and,
moreover, the plugin function valid-observation(Osn’−1, sn′, Q, vi) returns TRUE.

Having gathered observation-quorum(Oprev, sn′, Q) many valid OBSERVATION messages, the leader waits
out a grace period of duration ∆grace so that delayed observations may also be included in the report. When
the grace period expires, the leader collects all observations in a vector B and all corresponding signatures in a
vector Σ and sends them to the oracles in a [PROPOSAL, e, sn, B,Σ] message.

When an oracle pi receives the PROPOSAL message for the current epoch e and the sequence number sn of
the round with a vector of observation-quorum(Oprev, sn, Q) distinct and valid observations and a vector of
valid corresponding signatures, it invokes the plugin function outcome(Oprev, sn, Q,B) . The latter returns an
outcome O based on the vector of observations, on the query Q, and on the previous outcome Oprev, committed
to sequence number sn − 1. The outcome( ) function is deterministic, so that all correct oracles obtain
the same outcome O. Then pi sends a message [PREPARE, e, sn, σi] to all oracles, where σi is pi’s signature
on [PREPARE, e, sn, H(O)], where H denotes a cryptographic hash function. Note that no correct oracle will
accept a PREPARE message before the corresponding PROPOSAL message and, hence, if the leader is correct,
all correct oracles have the state needed to validate the signatures available locally.

When an oracle pi has obtained a BFT quorum of PREPARE messages with valid signatures that match
its local outcome O, it sends to all oracles a [COMMIT, e, sn, σi] message, where σi is pi’s signature on
[COMMIT, e, sn, H(O)], as before. When the first correct oracle does this, we say that the outcome is pre-
pared in epoch e and for sequence number sn. The oracle persists in storage the last prepared outcome O in a
preparedOutcome variable and its sequence number sn in a preparedSeqNo variable.

When pi receives a BFT quorum of matching COMMIT messages with valid signatures that also match its
local state, the oracle commits its locally evaluated round outcome O to sn and O becomes certified. Then pi
passes sn and the certified outcome, i.e., the outcome O together with the quorum of signed COMMIT messages
for O from epoch e, to the report attestation protocol. The oracle persists in storage the last committed outcome
O in a committedOutcome variable and its sequence number sn in a committedSeqNo variable. Finally, pi issues
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(a) Transition of follower phases (in Φ). (b) Transition of leader phases (in Λ).

Figure 3. State diagrams of an oracle for the roles as follower and leader (for epochs where the oracle is leader)
in the outcome generation protocol. All phases may additionally transition to the respective NEW-EPOCH phase
via a newEpochStart event, this is not shown.

a progress event to the calling pacemaker protocol and completes the round.
After the epoch leader pℓ has completed the round, it becomes ready to initiate the next round. The leader

starts a new round whenever the previous round has completed and ∆round units of time have passed since
starting the previous round, as controlled by a timer Tround. This means it waits for whichever event arrives
later. The frequency of starting rounds therefore depends, to some extent, on the duration of executing rounds.
By setting ∆round = 0, this enables the outcome generation protocol to commit outcomes as fast as the network
permits.

The outcome generation protocol prevents that a leader runs for more than ρ rounds, where ρ is a global
parameter. This is to avoid that a malicious leader drives the protocol forward as quickly as possible and causes
a denial-of-service attack, for instance through oracles exhausting their computational or network capacity, or
by making oracles hit some limits. In particular, when the leader attempts to start more than ρ rounds in the
same epoch and a correct oracle receives a corresponding NEW-ROUND message as a follower, it does not start
that round. Instead, the oracle signals this to the pacemaker protocol with a newEpochReq event and halts
any further processing in the current epoch. It stays in phase NEW-ROUND, and the only way to continue the
protocol is by responding to a newEpochStart event with a higher epoch number.

Alg. 3–6 describe how oracles aggregate observations to an outcome, commit to an outcome, and trigger
the report attestation protocol with committed the outcome. The pseudocode mixes actions performed by the
leader with those of the followers and orders them according to a failure-free run of the protocol. Every round
of a follower is structured into (follower-)phases from a set

Φ =
{

NEW-EPOCH, NEW-ROUND, SENT-OBSERVATION, SENT-PREPARE, SENT-COMMIT
}

and obeys the phase transitions shown in Figure 3a.
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The leader, concurrently to acting as a follower, also progresses according to the leader-phases from a set

Λ =
{

NEW-EPOCH, SENT-EPOCHSTART, SENT-ROUNDSTART, SENT-PROPOSAL, SENT-COMMIT, COMMITTED
}
.

The leader operates according to the phase transitions of Figure 3b.

6.3.2 Start of a new epoch

A round may fail due to network delays or when the leader does not behave correctly. For example, the leader
may send out conflicting PROPOSAL messages. Therefore, some oracle may not commit any outcome during
the duration of a round. Such liveness violations are caught by the pacemaker protocol, because no progress
events are emitted.

While the pacemaker protocol ensures that eventually all correct oracles are in the same epoch, it does not
ensure consistency of the committed outcomes across epochs. To this end, at the beginning of a new epoch, all
oracles send to the new epoch leader an EPOCH-START-REQ message with their highest certified outcome Ocert
and its corresponding sequence number sncert. By certified outcome we denote an outcome for which the oracle
has a prepare or commit quorum certificate (QC), i.e. a BFT quorum of distinct, signed PREPARE or COMMIT

messages. An oracle pi sends a certified outcome with a prepare QC for sequence number sn, if there exists no
sn′ ≥ sn for which pi has a commit QC. Otherwise it sends the outcome with the highest commit QC. In detail,
pi sends a message

[EPOCH-START-REQ, e, qcTag, sncert, Ocert,QC, σ]

where

• e is the new epoch;

• qcTag is a flag indicating if the quorum certificate consists of PREPARE or COMMIT messages;

• sncert is the highest sequence number for which an outcome has been prepared or committed, whichever
is higher;

• Ocert is the highest certified outcome;

• QC the highest prepare or commit quorum certificate; and

• σi is a signature of pi on the string e∥sncert∥qcTag.

The leader, upon gathering ⌈n+f+1
2 ⌉ valid EPOCH-START-REQ messages, determines a quorum certificate

highQC for the new epoch to justify sn = snhigh as the highest sequence number for which an outcome could
have been committed and sends an EPOCH-START message to all oracles. In detail, snhigh is the highest certified
sequence number among the valid EPOCH-START-REQ messages that the leader received; this means it is safe
to start the first round of the new epoch with sequence number snhigh +1. The EPOCH-START message consists
of

• e, the new epoch;

• snhigh, the highest sequence number that could have been committed;

• highQCTag, denoting whether the highest quorum certificate is a prepare or commit quorum certificate;

• OhighCert, the outcome that corresponds to snhigh;

• highQC, the highest prepare or commit quorum certificate among the ⌈n+f+1
2 ⌉ EPOCH-START-REQ mes-

sages, which justifies OhighCert and snhigh; and

• highQCProof, a BFT quorum of tuples (sncert, qcTag, σi), where σi is the signature of pi on e∥sncert∥qcTagi
and qcTagi indicates if pi sent a prepare of commit quorum certificate. This technique of proving that
snhigh is indeed the highest sequence number that could have been committed may be viewed as an adap-
tation of Fast-HotStuff [JNF20] to our PBFT-style protocol.
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An oracle pi, upon receiving a valid [EPOCH-START, e, snhigh, qcTag, OhighCert, highQC, highQCProof] mes-
sage for epoch e with a commit quorum certificate (qcTag = COMMIT), commits highCertOutcome to snhigh,
if it has not done so, passes (snhigh, OhighCert) to the report attestation protocol, and then starts accepting
ROUND-START messages for the next epoch. Otherwise, the EPOCH-START message contains a prepare quorum
certificate (qcTag = PREPARE) for snhigh and OhighCert. In this case, pi sends the message [PREPARE, e, highSn, σi]
with σi being its signature on PREPARE∥e∥snhigh∥OhighCert to all oracles.

Intuitively, if sn = snhigh + 1 is the lowest sequence number for which there exists no prepare quorum
among ⌈n+f+1

2 ⌉ EPOCH-START messages, then no correct oracle could have committed any outcome for sn,
as there exist not enough oracles that could have sent a COMMIT message for sn. Therefore, sn + 1 is free
to assign a new outcome to. Moreover, no correct oracle could have prepared an outcome O ̸= OhighCert for
snhigh, since there exists at least a prepare quorum certificate for OhighCert and, thus, no correct oracle could have
committed O ̸= OhighCert for highSn in a previous epoch. Therefore, it is safe to send a PREPARE message with
outcome OhighCert for snhigh in the new epoch. Finally, upon receiving a valid commit certificate for highSn and
OhighCert, an oracle can directly commit, as any set of ⌈n+f+1

2 ⌉ EPOCH-START-REQ messages will contain at
least one prepare certificate for OhighCert and snhigh, and, therefore, no outcome different than OhighCert can be
prepared, and hence committed, for snhigh in the new epoch.

6.4 Report attestation

The report attestation protocol is also run continuously by every oracle. It receives (sequence number, certified
outcome) pairs from the outcome generation protocol, converts them into separate reports, gathers signatures
on each report and thereby attests each report, and passes every attested report individually to the transmission
protocol. Details of the report attestation protocol are shown in Algorithm 7–8 and described next.

The outcome generation protocol passes a sequence number, certified outcome pair (sn,CO) to the report
attestation protocol through a committedOutcome(sn,CO) event. The certified outcome CO is the committed
outcome O along with the commit quorum certificate for O, i.e., a BFT quorum of distinct signed COMMIT

messages for O from the same epoch.
When some oracle pi receives CO from the outcome generation protocol, it converts it into a vector of

reports R by calling the reports(sn, O) plugin function. It then signs each report in the array and sends a
[REPORT-SIGS, sn,Σ] message to all oracles, where Σ is the vector of report signatures.

When an oracle pi has received f +1 REPORT-SIGS messages for some sequence number sn, it first checks
if it has the certified outcome for sn locally. If not, it asks other oracles for it as follows. Oracle pi creates a
random permutation of the f + 1 oracles that have sent a REPORT-SIGS message for sn and starts asking them
one by one for the certified outcome for sn. It repeats this step periodically, every ∆req cert commit, by sending one
[CERTIFIED-COMMIT-REQ, sn] at a time, until it receives the certified outcome. The randomized order serves
to balance the load among the oracles. When a correct oracle pj receives a [CERTIFIED-COMMIT-REQ, sn]
message from pi, it sends to pi the corresponding certified outcome if it has not already done so. Notice that
every set of the f + 1 oracles includes at least one correct oracle pc. Therefore, pi will eventually obtain the
certified outcome from pc or through a committedOutcome(sn,CO) event.

When the certified outcome CO for sn is locally available at pi together with f + 1 valid REPORT-SIGS for
each report r in the vector of reports derived from CO, then pi creates an attestation for the report. The attested
report includes, along with r, the sequence number sn of the corresponding outcome O, the position of r in
the vector of reports as returned by reports(sn, O) , the vector of f + 1 signatures for r and the vector of the
oracle identities that produced the f + 1 signatures. The protocol then invokes the transmission protocol with
the attested report via an attestedReport event.

The outcome generation protocol guarantees that at least ⌈n+f+1
2 ⌉ − f ≥ f + 1 correct oracles commit an

outcome for each sequence number. Therefore, it is guaranteed that eventually at least f + 1 oracles will send
a valid REPORT-SIGS message for each sequence number and every correct oracle will invoke the transmission
protocol for all reports obtained from the outcome committed to every sequence number.

Note that though outcomes are already signed in PREPARE and COMMIT messages during the outcome
generation protocol, we opt to signing each report that corresponds to the outcome separately for two reasons.
First, the outcome generation protocol requires ⌈n+f+1

2 ⌉ oracles to sign each PREPARE and COMMIT message
in order to preserve consistency. However, using attestations with ⌈n+f+1

2 ⌉ signatures is more expensive in
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Algorithm 7 Report attestation protocol, executed by oracle pi (part 1)
state

availableCertOutcomes← {}: maps a sequence number to a certified outcome
missingOutcomes← ∅: a set of sequence numbers for which the outcome is missing
oraclesWithCertOutcomes← {}: maps a sequence number to a randomized queue of oracle IDs
sentCertCommit← {}: maps a sequence number to a set of oracle IDs to which CERTIFIED-COMMIT has been sent
reports← {}: maps a sequence number to a vector of reports, non-⊥ as soon as REPORT-SIGS message is sent
reportSigMsgs← {}: maps a sequence number to a vector of REPORT-SIGS messages per oracle ID
completeOutcomes← ∅: set of sequence numbers corresponding to outcomes whose reports attestation completed

upon event committedOutcome(sn,CO) do
if availableOutcomes[sn] = ⊥ then

availableCertOutcomes[sn]← CO // may trigger sending a REPORT-SIGS message

upon ∃sn s.t. availableCertOutcomes[sn] ̸= ⊥ ∧ reports[sn] = ⊥ do
(outcome, )← CO
reports[sn]← reports(sn, outcome) // reports[sn] stores a vector of reports
nr← |reports[sn]|
Σ← [⊥]nr

for k = 1, . . . , nr do
Σ[k]← signAttesti(sn, reports[sn][k])

send message [REPORT-SIGS, sn,Σ] to all pj ∈ P

upon receiving message [REPORT-SIGS, sn,Σ] from pj s.t. reportSigMsgs[sn][j] = ⊥ do
reportSigMsgs[sn][j]← [REPORT-SIGS, sn,Σ]

upon
∣∣∣∣{pj ∈ P∣∣∣reportSigMsgs[sn][j] = [REPORT-SIGS, sn,Σ] ̸= ⊥

∧
∧|reports[sn]|

k=1 Σ[k] ̸= ⊥ ∧ verifyAttestj
(
(sn, reports[sn][k]),Σ[k]

)}∣∣∣∣ ≥ f + 1

∧ reports[sn] ̸= ⊥ ∧ sn /∈ completeOutcomes do
completeOutcomes← completeOutcomes ∪ {sn}
nr← |reports[sn]|
for k = 1, . . . , nr do // attest all reports

(h, j)← (1, 1)
(J, T )← ([⊥]f+1, [⊥]f+1)
while h ≤ f + 1 do // collect the attestations for report

while reportSigMsgs[sn][j] = ⊥ do // at least f + 1 entries in reportSigMsgs[sn] are non-⊥
j ← j + 1

( , ,Σ)← reportSigMsgs[sn][j]
(J [h], T [h])← (j,Σ[k])
h← h+ 1
j ← j + 1

invoke event attestedReport((sn, k, reports[sn][k], J, T )) // see transmission protocol in Alg. 9
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space consumption and verification time than with the f + 1 signatures gathered by the report attestation
protocol. Second, splitting the outcome into separate reports allows for transmitting each report in a dedicated
transaction, which gives applications more flexibility.

There is a trade-off between the cost of attestation verification per report and the flexibility of transmitting
each report in a single transaction. Therefore, the reports( ) plugin function may also choose to batch multiple
logically related reports into a single one. This is the reason why the conversion of an outcome to a vector of
reports is configurable.

6.5 Transmission

The transmission protocol forms the interface between the Offchain Reporting Protocol and the blockchain
running the smart contract C. This protocol also runs continuously and concurrently to the other protocols.

Algorithm 9 is responsible for transmitting a report a resulting from an outcome produced by Algorithm 3–
6 and attested in Algorithm 7–8 to C. It receives one attestedReport(a) event for every report a attested by
the attestation protocol (Algorithm 7–8) and then creates a suitable transaction containing a and submits this to
C. Under ideal conditions, the report attestation algorithm starts the transmission protocol at roughly the same
time across all oracles.

The algorithm first filters incoming attested reports to avoid redundant transmissions and to reduce gas
costs. In particular, we aim to protect against a scenario where many similar reports are produced in quick
succession. In such a case, we only want to transmit the first such report and discard the following ones. This
can be specified for a reporting protocol through two plugin functions should-accept-attested-report(a) and
should-transmit-accepted-report(a) , where a denotes an attested report resulting from

The first filter, should-accept-attested-report(a) , is invoked immediately after a has been submitted to
the transmission protocol. The second filter, should-transmit-accepted-report(a) , gives the protocol another
chance to save transaction fees. A plugin may use this, for instance, to check whether C has already recorded
a and made the transmission obsolete. This check is called immediately before each transmission.

To actually transmit the reports, the algorithm proceeds in stages and is globally parameterized by a stage
duration ∆stage and a schedule S = (s1, . . . , s|S|). In stage i, there are si distinct and randomly selected oracles
that attempt to transmit the report to C. The transmitting oracles are determined by a pseudorandomly chosen
permutation π of {p1, . . . , pn}, which ensures that each oracle is chosen at most once as a transmitter.

In the transmission schedule, stage i starts after duration (i − 1)∆stage has elapsed. Writing t0 = 0 and
tk =

∑k
j=1 sj , this means that in stage k, the oracles on position tk−1 + 1, . . . , tk−1 + sk of π are supposed to

transmit. By requiring that
∑

i si > f , we can ensure that there is at least one correct node that will transmit
to C. The timeouts should be such that periods in which reports with different sequence numbers should be
transmitted may overlap substantially, i.e., a report with a higher sequence number may arrive before many
oracles had a chance to transmit the previous one.

The value of ∆stage must be set with respect to all other timeout values and in accordance with the block in-
terval on the blockchain running C. Typically it is a multiple of the block interval on the chain. See Section 6.6
for a discussion of the timing parameters.

For the transmission protocol to achieve its goal, we require that a correct oracle will always be able to get a
transaction included in the blockchain within ∆stage time. This assumes that (1) miners are actively mining the
blockchain and including transactions from their mempools according to the usual gas price auction dynamics
and that (2) the oracle appropriately sets (or escalates) its gas price bid to have the transmission transaction
included in the blockchain. These assumptions may be violated in practice, e.g., when the blockchain is severely
congested. In such cases, transmission transactions will still be included eventually, but later and at a higher
total gas cost than modeled here.

The selection of transmitting oracles occurs with a pseudorandom function Fx : {0, 1}∗ → Sym(n), where
x is a secret seed known only to oracles and Sym(n) is the set of permutations of {1, . . . , n}. Given the
(implicit) protocol identifier, report sequence number, and position, Fx deterministically derives a permutation
of the node set. As with the leader function described in Section 6.2, the seed x should not be known to the
oracles before they are committed to their indexing in {p1, . . . , pn}, so that a malicious coalition cannot arrange
themselves to dominate the early parts of the schedule.
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Algorithm 8 Report attestation protocol, executed by oracle pi (part 2)
upon ∃sn s.t.

∣∣{pj ∈ P|reportSigMsgs[sn][j] ̸= ⊥}
∣∣ = f + 1 ∧ reports[sn] = ⊥ ∧ sn /∈ missingOutcomes do

for pj ∈ random-perm
({

pj ∈ P
∣∣reportSigMsgs[sn][j] ̸= ⊥

})
do

oraclesWithCertOutcomes.enqueue(pj)
missingOutcomes← missingOutcomes ∪ {sn}
schedule missingOutcome(sn) at now

upon event missingOutcome(sn) s.t. reports[sn] = ⊥ do
send message [CERTIFIED-COMMIT-REQ, sn] to oraclesWithCertOutcomes.dequeue()
schedule missingOutcome(sn) at now +∆req cert commit

upon receiving message [CERTIFIED-COMMIT-REQ, sn] from pj s.t. availableCertOutcomes[sn] ̸= ⊥
∧ pj /∈ sentCertCommit[sn] do

sentCertCommit[sn]← sentCertCommit[sn] ∪ {pj}
send message [CERTIFIED-COMMIT, sn, availableCertOutcomes[sn]] to pj

upon receiving message [CERTIFIED-COMMIT, sn,CO] from pj s.t. availableCertOutcomes[sn] = ⊥ do
(outcome,QC)← CO
if validQC(sn, outcome, COMMIT,QC) then // see outcome generation protocol in Alg. 4

availableCertOutcomes[sn]← CO // may trigger sending a REPORT-SIGS message

Algorithm 9 Transmission protocol (executed by every oracle pi).
state

timer Ttransmit, initially stopped: delays until next report should be transmitted

upon event attestedReport(a) do
(sn, pos, , , )← a

if should-accept-attested-report(a) then
∆transmit ← transmit-delay(i, sn, pos)
schedule scheduledReport(a) at now +∆transmit

upon event scheduledReport(a) do
if should-transmit-accepted-report(a) then

send blockchain transaction with a to C

function transmit-delay(i, sn, pos)
π ← Fx(sn∥pos) // derive pseudorandom permutation of {1, . . . , n}
k ← k such that

∑k−1
j=1 sj < π(i) ≤

∑k
j=1 sj // assuming s0 = 0

return k ·∆stage
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Mechanism design. Faulty oracles may misbehave and ignore the global transmission schedule given by the
algorithm, e.g., because their clock is malfunctioning.

The defense against this behavior is purely economical. The owner should monitor the transactions sent
to C and check that oracles follow the transmission schedule. We expect the owner to remove any oracles
that consistently misbehave (i.e., submit too late or too early) from the protocol, preventing them from earning
future reporting and transmission fees. Since such an attack threatens neither safety nor liveness properties,
and we expect the ratio between earnings from ongoing protocol participation to earnings from such an attack
(prior to discovery) to be high, this defense should suffice in practice.

6.6 Implementation considerations

Notice that all protocols are functional under partial synchrony only to the extent that the timing characteristics
of the network after GST are reflected by the chosen constants. Since they are fixed and not determined
adaptively with respect to an unknown ∆, the protocol does not formally adhere to partial synchrony.

Summary of constants. We provide a unified summary of the constants used in the protocol description and
analysis.

Global

n is the number of oracles. The current implementation assumes n ≤ 31.

∆ is the assumed upper bound on communication latency during periods of synchrony. The choice of all other
time constants is constrained by this. In typical WAN deployments, this value is on the order of hundreds
to thousands of milliseconds. Note that ∆ plays a role for the analysis but is never explicitly used as a
configuration parameter.

Pacemaker

∆process denotes a maximum on the processing delay of any function implemented by a reporting plugin.1 In
practice, this value is typically on the order of tens to hundreds of milliseconds.

∆progress is the time during which a leader of an epoch e must achieve progress or be replaced. The outcome
generation protocol defines “progress” as periodically committing an outcome, indicated by progress
events, or aborting e. After GST and with a correct leader, outcome generation must ensure progress
and the pacemaker monitors this by observing progress events. Recall that every correct oracle triggers
progress whenever it finishes a round and commits an outcome.

In particular, from the moment when the first correct oracle initializes epoch e, the leader of the epoch
must have enough time to initialize e, make 2f +1 correct oracles commit the outcome of the first round
of e, and trigger progress. Subsequently, the leader is supposed to start a new round after each interval
of ∆round. As one round might finish quickly and a next round might exhaust its maximal duration, two
progress events might occur up to 2max{∆round,∆grace} apart. Consequently, ∆progress must be set to
2max{∆round,∆grace} or a larger value. This also gives enough time for the first round of an epoch to
start.

∆resend is the interval at which nodes resend NEW-EPOCH-WISH messages.

Atomic outcome generation

∆initial is the time during which, after GST, a leader must ensure that n − f oracles start the first round of
outcome generation or be replaced. The ∆initial parameter must therefore be set to a value such that form
the time that the first correct oracle initializes epoch e, the leader has enough time to initialize e and
gather ⌈n+f+1

2 ⌉ EPOCH-START-REQ messages and for all correct oracles to receive the corresponding
EPOCH-START message from the leader. Moreover, ∆initial should be shorter than ∆progress, as this allows

1In the implementation, a separate maximum processing delay can be configured for each function of a reporting plugin. This
flexibility is not needed for the analysis in this document, however.
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Constant Value
∆process 50 milliseconds
∆progress 2 seconds
∆resend 5 seconds
∆initial 500 milliseconds
∆round 250 milliseconds
∆grace 50 milliseconds
ρ 10 rounds

∆stage 2 seconds

Table 1. Example values for constants for the reporting plugin for numerical values. The table assumes a ∆ of
150 milliseconds. We assume that we are running over a WAN with high-quality networking between oracles
and that the target blockchain produces multiple blocks per second.

oracles to terminate an epoch quickly in case the leader is not responsive right at the beginning of the
epoch.

∆round is the minimum waiting time of the leader to start a new round. This value is useful for limiting the
speed at which rounds progress, e.g., to enable more precise control of the overall resource consumption.
It may be set to a zero or to a small value, such that a next round starts immediately after the conclusion
of the previous one.

∆grace is the duration of the grace period during which observations of delayed oracles are still considered by
the leader, even after it has gathered enough of them. This value is useful in cases where, in the happy
path, one wants to give more oracles than strictly needed an opportunity to contribute observations to the
outcome. This parameter sets a minimun period for the time that one round takes to complete, i.e., in
situations with instantaneous message delivery. If ∆round ≤ ∆grace then successive rounds may also start
without a delay in between.

ρ is the maximum number of rounds in an epoch.

Transmission

∆stage is used to stagger stages of the transmission protocol. Multiple blocks should be mineable on the
blockchain hosting C in this period.

If ∆round and ∆grace are both set to 0, then the outcome generation protocol is (optimistically) respon-
sive [PS17], as it proceeds as fast as the network speed permits.

Domain separators. All hash and signature computations have to use proper domain separators, which we
omit from the above protocol description for notational clarity. Domain separators include:

• Protocol identifier

• Address of contract C

• A counter of protocol instances (maintained by C)

• Blockchain identifier (e.g. for Ethereum mainnet)

• Set of oracles P

Example values for constants. Table 1 shows a realistic example configuration for the various constants used
to configure the protocol.
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7 Reporting plugin for numerical values

This reporting plugin supports the median of prices or other numerical values. Using the median among more
than 2f observations ensures that the reported value is plausible in the sense that faulty oracles cannot move it
outside the range of observations submitted by correct oracles. The range of blocks to calculate the median is
such that any two reports with sequence numbers sn and sn + 1 contain median prices for contiguous ranges
of blocks. The range of blocks refers to the blockchain B on which contract C runs. Put differently, for each
block height in B, there exists a unique report.

The implementation of the plugin is described in Algorithm 10. We provide a summary of its functionality
grouped by subprotocol invoking the plugin.

Atomic outcome generation. Each observation includes an observed value d, the timestamp t of the observa-
tion, and the height b of the tip of the blockchain B when the observation is made. The valid-observation( )

function ensures that the observations are well-formed. A malformed observation indicates a faulty oracle;
therefore, such observations should be ignored.

For reporting numbers from a totally ordered domain, the reporting plugin uses a median computation in
the outcome( ) function. In this way, it prevents Byzantine oracles from significantly affecting the reported
values by introducing too big or too small values in the observation set. Not only the observed value (d) in a
report is obtained as the median of observations, also the timestamp (t) and the block height (b) are calculated
as medians. In particular, the observation-quorum( ) is set to 2f + 1, such that for d, t, and b, respectively,
the corresponding median lies in an interval of two values that have been observed by correct oracles.

The outcome( ) function also ensures that the range of blocks {bstart, . . . , bend} covered by the report
directly follows the range of blocks from the previous outcome {b′start, . . . , b

′
end}, i.e., such that bstart = b′end +1.

Moreover, the upper limit bend of the block range in the current report should be at least equal to the lower
limit bstart. If the median b of the reported block numbers of the blockchain tip is greater than or equal to
bstart, then bend is assigned b. If b is less than bstart, then the plugin function indicates that no report should be
generated for this round. This is captured by the shouldreport flag, which is a field of the outcome.

Report attestation. The reports( ) function transforms the committed outcome into a vector of reports.
Each outcome is transformed into a vector of at most one report, according to the shouldreport flag.

Transmission. The two plugin functions should-accept-attested-report( ) and should-transmit-accepted-report( )

are relevant for transmission. Recall that should-accept-attested-report( ) performs its check whenever the
transmission protocol is invoked and should-transmit-accepted-report( ) performs its check right before the
oracle transmits the attested report.

Both functions aim to prevent that a report r for block range {bstart, . . . , bend} is transmitted to smart con-
tract C if any report for some block height in {bstart, . . . , bend} has already been finalized on blockchain B.
Since the protocol guarantees that no two different attested reports have overlapping block ranges, it suffices
to check that no report is finalized in B for the upper limit of the block range bend. To that end, both plugin
functions query contract C.

8 Analysis

This section contains a detailed analysis of the algorithms introduced earlier, consisting of definitions and
semi-formal arguments of correctness.

Throughout this section, we assume that the local processing time of any correct oracle after receiving one
or multiple messages is at most ϵ, which is small compared to all other durations under consideration:

ϵ is an upper bound on the processing latency of any message and local event between receiving and sending
messages over the network. It includes receiving multiple messages of the same type concurrently and
also subsumes all processing by reporting-plugin functions.
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Algorithm 10 Reporting plugin implementation for numerical (ordered) values (executed by every pi).

function query(Oprev, sn)
return ⊥

function observation(Oprev, sn, Q)

t← now() // the current local time at pi
d← value() // the current realization at pi of the reported (data) value
b← blockheight() // the height of current tip of the blockchain
return (t, d, b)

function valid-observation(Oprev, sn, Q, v)

return valid(v) // valid() checks if the observation is well-formed

function observation-quorum(Oprev, sn, Q)

return 2f + 1

function outcome(Oprev, sn, Q,B)

t← median({t′|( , (t′, , )) ∈ B}) // recall B is a vector of index-observation pairs
d← median({d′|( , ( , d′, )) ∈ B})
if sn = 1 then // “genesis” outcome

( , , b′start, b
′
end, )← (0, 0, 0, 0, 0)

else
( , , b′start, b

′
end, )← Oprev

if b′start ≤ b′end then
bstart ← b′end + 1

else
bstart ← b′start

bend ← median
(
{b|( , ( , , b)) ∈ B}

)
shouldreport← (bstart ≤ bend)
O ← (t, d, bstart, bend, shouldreport)
return O

function reports(sn, O)

(t, d, bstart, bend, shouldreport)← O
if shouldreport then

return [(t, d, bstart, bend)] // a vector with a single report
else

return [⊥] // an empty vector

function should-accept-attested-report(a)
( , , r, , )← a
( , , , bend)← r
return ¬report-for-height(bend)

function should-transmit-accepted-report(a)
( , , r, , )← a
( , , , bend)← r
return ¬report-for-height(bend)

function report-for-height(h)
// Queries the smart contract C and returns TRUE if and only if there exists a report for block height h.
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The partially synchronous system model [DLS88] postulates a global stabilization time (GST), after which
no more crashes occur, clocks are synchronized, and every message between two correct oracles is delivered
within ∆. Since each oracle takes no longer than ϵ to process a message, this means that during synchronous
periods, i.e., after GST, all messages between correct nodes are delivered timely:

∆ is the upper bound on the time taken by the network to deliver a message sent from one correct oracle to
another one.

For understanding the arguments in this section, it is also important to recall that all oracles communicate by
sending messages to each other using reliable and authenticated point-to-point links.

8.1 Pacemaker

The pacemaker protocol (Section 6.2) runs continuously. It interacts with a connected outcome generation
protocol by consuming (input) events of type progress and newEpochReq and by emitting (output) events of
type newEpochStart(e, ℓ). The latter indicate that the outcome generation protocol should start epoch e with
leader ℓ.

progress: Originates from the outcome generation protocol and indicates to the pacemaker that the leader has
made progress, i.e., an outcome has been committed.

newEpochReq: Originates also from the outcome generation protocol and indicates a leader change to the
pacemaker. This signals either that the current epoch has reached its maximal number of rounds or that
the leader does not make progress in the current epoch, according to the oracle’s local view and clock;
therefore, the oracle should advance to the next epoch and a new leader.

newEpochStart(e, ℓ): Signals to the outcome generation to start epoch e with pℓ as leader.

The pacemaker protocol internally uses a timer Tprogress with duration ∆progress that captures the assumption
that the outcome generation protocol should repeatedly emit progress or newEpochReq events that are no more
than ∆progress apart. Since every epoch of the outcome generation protocol is driven by a leader oracle pℓ,
we say that the oracle times out on pℓ when no progress event occurs between two successive timeouts from
Tprogress. We say than an oracle aborts epoch e when it times out on the epoch leader or when it receives a
newEpochReq from the outcome generation protocol.

Furthermore, the primitive assumes from the connected outcome generation protocol that whenever a
correct oracle triggers an event newEpochStart(e, ℓ), then the oracle later either times out on pℓ or issues a
newEpochReq event. This is needed to ensure the first property in the following definition.

Definition 1. A pacemaker protocol has the following properties:

Eventual agreement: Eventually, every correct oracle has started the same epoch e with a correct leader and
does not abort it unless some correct oracle times out or indicates a leader change.

Eventual succession: After GST, if more than f correct oracles abort epoch e, then all correct oracles will
start epoch e+ 1 after at most 2∆ + 2ϵ.

Putsch resistance: A correct oracle that has last started epoch e does not start an epoch e′ > e unless at least
one correct oracle has aborted epoch e.

We now show that Algorithm 2 implements a pacemaker protocol. We proceed by formulating and proving
a number of lemmas.

The first one characterizes how the correct oracles progress to subsequent epochs. Notice this holds also for
asynchronous periods. The lemma mentions that a correct oracle that has last started a particular epoch e may
broadcast a NEW-EPOCH-WISH message with an epoch e′ > e. According to the protocol, an oracle does this if
and only if also aborts epoch e; this connects the condition to the putsch resistance property of the pacemaker.

Lemma 1. Suppose the maximal epoch that has been started by any correct oracle is ē and let ne denote the
maximal value of variable ne at any correct oracle. If no correct oracle aborts ē, then
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(a) no correct oracle broadcasts [NEW-EPOCH-WISH, e′] with e′ > ne;

(b) ē ≤ ne ≤ ē+ 1.

Proof. For claim (a), let’s assume the contrapositive, i.e. there exists some correct oracle which broadcast
[NEW-EPOCH-WISH, e′, ] with e′ > ne. Let p∗ be the first correct oracle that sends [NEW-EPOCH-WISH, e′, ]
with e′ > ne. According to Algorithm 2, for p∗ it holds that ne = e′ > ne. Also according to Algorithm 2,
a correct oracle, and thus p∗, can advance ne either independently by aborting epoch ē, or else can advance
ne via the new-epoch-wish messages. The first case is excluded by the lemma hypothesis, thus, we now focus
on the latter case. The Algorithm 2 requires for p∗ to have received [NEW-EPOCH-WISH, es, ] messages from
oracles ps, where s ∈ S, for a set S ⊂ [n] of cardinality at least f + 1, where es ≥ ne > ne. Any such set
must contain at least one i such that pi is a correct oracle, which contradicts the assumption that p∗ was the first
correct oracle that sent such a message. Therefore, the first correct oracle that sends such a message, must have
aborted ē, a contradicion.

To establish claim (b), suppose towards a contradiction that ne ≥ ē+2. It follows from the above argument
that at least one correct oracle has sent a NEW-EPOCH-WISH message containing epoch ē+2 or higher, through
the “NEW-EPOCH-WISH amplification rule.” However, this oracle has set ne to e+1 from its variable e according
to the algorithm. But ē is the maximum epoch value e of any correct oracle and therefore e + 1 = ne = ne ≥
ē+ 2 ≥ e+ 2, a contradiction. It follows that ne is at most ē+ 1.

The next lemma establishes a condition for satisfying eventual agreement, i.e., that all correct oracles start
the same epoch at some time after GST and remain in this epoch long enough.

Lemma 2. Consider an epoch e such that no correct oracle has started any higher epoch than e. If some correct
oracle has started e before GST, then define a point in time τ to be GST; otherwise, let τ be the time when the
first correct oracle started e. Let ne denote the maximal value of variable ne at any correct oracle at time τ .

If e = ne, no correct oracle times out, and epoch e does not indicate a leader change at any correct oracle
during at least ∆agree = ∆resend + 2∆ + 3ϵ after τ , then all correct oracles have started epoch e at time
τ +∆agree and do not abort it afterwards unless epoch e indicates a leader change.

Proof. Notice that the local epochs and the highest epochs (stored in e and ne, respectively) may differ between
correct oracles because of crashes. In particular, correct oracles that have recovered may have missed arbitrarily
many messages.

Let pi be the oracle that has started epoch e at time τ according to the assumption. Observe that τ is GST
or later. Oracle pi has received more than 2f NEW-EPOCH-WISH messages containing an epoch value of at
least e. More than f of those messages were sent by correct oracles.

If some of these f correct oracles had crashed while sending their NEW-EPOCH-WISH message and mean-
while recovered, they restored their e and ne variables to their highest values before the crash, and operate
correctly from now on. Thus, more than f correct nodes retransmit NEW-EPOCH-WISH messages with an
epoch value of e or higher at the latest by ∆resend + ϵ after τ .

Thus, after at most ∆resend+∆+2ϵ, every correct oracle has received and processed more than f NEW-EPOCH-WISH

messages containing an epoch value of at least e. According to the algorithm and the “NEW-EPOCH-WISH am-
plification rule”, since epoch values of at least e are reported more than f times, every correct oracle then
also broadcasts a NEW-EPOCH-WISH message containing epoch e or higher by this time, i.e., not longer than
∆resend +∆+ 2ϵ after τ .

These messages have been received and processed by all correct oracles after at most ∆resend + 2∆+ 3ϵ =
∆agree. Hence, every correct oracle has received n − f > 2f NEW-EPOCH-WISH messages with an epoch at
least e and has started epoch e after ∆agree. Figure 4 visualizes how some correct oracle pk starts epoch e the
latest by τ + ∆agree. Lemma 1(a) implies that no oracle starts a higher epoch afterwards, unless some correct
oracle indicates a leader change in epoch e.

Notice that the previous lemma only bounds the time after GST for reaching agreement on a particular
epoch e when e = ne. If some correct nodes have started epoch e at GST and ne = e + 1, which is the
only alternative to this condition according to Lemma 1, it means that that variable ne of at least one correct
oracle is equal to ne. The situation may remain like this for an unbounded period. But once the faulty oracles
cause a correct oracle to start epoch ne by sending NEW-EPOCH-WISH messages with parameters at least ne,
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Figure 4. Oracle pi is the first to enter epoch e upon receiving 2f + 1 NEW-EPOCH-WISH from at least f + 1
correct oracles. One of them, pc, crashed while sending the NEW-EPOCH-WISH. It recovers the latest after GST
and resends it to all oracles. Oracle pj represents of the correct oracles that receive the f+1 NEW-EPOCH-WISH

messages and because of “NEW-EPOCH-WISH amplification rule” sends its own NEW-EPOCH-WISH. Oracle pk
represents a correct oracle that receives the 2f + 1 NEW-EPOCH-WISH messages, the latest thanks to amplifi-
cation.

the condition of the lemma applies again and bounds the time that the correct oracles need for progressing to
epoch ne.

Moreover, because a correct oracle eventually ends every epoch it has started, it also does so after GST. This
implies that an unbounded sequence of epochs is started after GST. Due to the implementation of the leader(e)
function that selects all oracles approximately equally, also correct oracles become leaders for an unbounded
number of epochs.

We can summarize this behavior less precisely in the following lemma.

Lemma 3 (Eventual agreement). Eventually, every correct oracle has initialized the same epoch e with a
correct leader and does not abort it unless some correct oracle times out or indicates a leader change.

The next lemma addresses liveness of the pacemaker after the network has stabilized.

Lemma 4 (Eventual succession). After GST, if more than f correct oracles abort epoch e, then all correct
oracles will advance to epoch e+ 1 after at most 2∆ + 2ϵ.

Proof. First, observe that when a correct oracle aborts epoch e, it sets ne = e + 1. Let τ be the point in
time when the (f + 1)st correct oracle aborts epoch e. Notice that the statement only considers the time after
GST, when no more oracles crash. All correct oracles therefore receive f + 1 NEW-EPOCH-WISH messages
for epoch e + 1 by time τ + ∆ and because of the “NEW-EPOCH-WISH amplification rule” send their own
NEW-EPOCH-WISH messages for epoch e+ 1 by time τ +∆+ ϵ. Therefore, by time τ + 2∆+ 2ϵ, all correct
oracles have received and processed at least 2f + 1 NEW-EPOCH-WISH messages for epoch e + 1. Hence, all
correct oracles have started epoch e+ 1 after at most 2∆ + 2ϵ.

Lemma 5 (Putsch resistance). A correct oracle does not send a NEW-EPOCH-WISH message for an epoch
e′ > e unless at least one correct oracle aborts epoch e.

Proof. Let pi be a correct oracle that sends a NEW-EPOCH-WISH message. We distinguish two cases. Either
pi has aborted epoch e or pi has not aborted epoch e. In the first case, the lemma is satisfied trivially, as the
correct node which aborts is pi itself.

Otherwise, pi has received 2f + 1 NEW-EPOCH-WISH messages for epochs higher than e, of which at least
f + 1 are from correct oracles. Notice that ne in Lemma 1 is the maximal epoch value that any correct oracle
has ever sent in a NEW-EPOCH-WISH message. Assume that e is the highest epoch started by any correct oracle,
hence we have ne = e.

Towards a contradiction, suppose that some correct oracle has sent a NEW-EPOCH-WISH message for
epoch e′, yet no correct oracle has aborted epoch e.
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According to the algorithm, this means the correct oracle has received NEW-EPOCH-WISH messages for
some epoch higher than e from more than 2f oracles, of which some must have been sent by correct oracles.
But by Lemma 1(a) with ne = e, no correct oracle has sent a NEW-EPOCH-WISH message with an epoch higher
than e under the assumptions of putsch resistance. The lemma follows.

The statements of Lemmas 3–5 imply all properties of a pacemaker protocol. Therefore, the following
result summarizes our analysis.

Theorem 6. Algorithm 2 implements a pacemaker protocol.

8.2 Atomic outcome generation

We now give a definition for outcome generation. As illustrated in Section 6.3, this protocol receives newEpochStart(e, ℓ)
events from the pacemaker protocol. It emits back progress and newEpochReq events. The former indicates
that the oracle committed an outcome and the latter indicates that the pacemaker protocol should move to a
new epoch. Moreover, the protocol emits committedOutcome(sn, CO) events destined for the report attesta-
tion protocol to indicate that the outcome generation protocol committed a certified outcome CO to sequence
number sn. Formally:

newEpochStart(e, ℓ): Instructs the oracle to start epoch e and elects pℓ to be leader.

progress: Indicates that the outcome generation protocol has made progress by committing an outcome. This
implies that the most recently elected leader pℓ is not suspected as faculty.

newEpochReq: Indicates that the outcome generation protocol requests a switch to a new epoch and aborts
the current epoch. This may occur either because the Tinitial timer expired at the beginning of the epoch
or because the epoch has committed the maximum foreseen number of outcomes.

committedOutcome(sn, CO): Indicates that the oracle in the outcome generation protocol committed a (cer-
tified) outcome CO to sequence number sn. Recall that a certified outcome CO is a tuple that contains
an outcome returned by outcome( ) and a commit-quorum certificate.

As the reporting mechanism is configurable through reporting plugins according to Section 5, oracles call
observation(Oprev, sn, Q) for obtaining an observation value v, which may change for every such call. When

this function is invoked, we say that an oracle observes value v in context Oprev, with sequence number sn, and
for query Q. Here and in the following, Oprev denotes most recently committed outcome, which is found in the
outcome variable.

Whenever an oracle pi receives or emits an event h, such as committing an outcome, and h occurs after pi
starts some epoch e and before it starts any epoch higher than e, we abbreviate this by saying event h occurs at
pi in epoch e.

Intuitively, the outcome generation protocol commits certified outcomes to sequence numbers in the same
order at all correct processes. It is therefore close to a primitive called atomic broadcast or total-order broad-
cast [CGR11], which outputs a global, totally ordered sequence of messages. (In blockchain contexts, this
primitive is very often simply known as consensus.) However, outcome generation is weaker: it maintains
the total order and commits an outcome to every sequence number, but not every correct oracle commits the
complete sequence of outcomes, rather the primitive requires only that for every sequence number at least f+1
correct oracles commit the outcome. This is apparent from the weak validity property in the definition below
and suffices for the intended use of outcome generation.

In the following, let
∆+ = 7ϵ+ 5∆+∆grace

and also assume ∆round > ∆+. Note this implies also ∆round > ∆grace. The protocol actually permits also
∆round < ∆grace, for instance with ∆round = 0, which means that a new round may start immediately after
the leader completes the previous one. However, since it complicates the liveness analysis, we make this
simplifying assumption here.

Definition 2. An outcome generation protocol satisfies these conditions:

30



Integrity: If a correct oracle pi commits an outcome O for sequence number sn in epoch e, then (1) O =
outcome(Oprev, sn, Q,B) and the leader pℓ′ of some epoch e′ ≤ e has sent Q as query in a ROUND-

START message with sequence number sn, and (2) B is a vector as follows: for a set P of at least
observation-quorum(Oprev, sn, Q) −f distinct correct oracles pj , it holds that pj has observed value B[j]

in context Oprev and with sequence number sn. Moreover, if pℓ′ is correct, then Q = query(Oprev, sn) .

No duplication: No correct oracle commits multiple outcomes for the same sequence number.

Consistency: No two correct oracles commit different outcomes for the same sequence number.

Completeness: If some correct oracle commits an outcome O for a sequence number sn, then for each se-
quence number in {1, . . . , sn}, some correct oracle has committed an outcome.

Weak totality: If a correct oracle pi commits an outcome O for sequence number sn, eventually at least f + 1
correct oracles commit O to sn.

Liveness: Consider a time after GST when the leader pℓ of epoch e is correct:

1. Suppose leader pℓ either starts the epoch or invokes query at some time τ . Then pℓ invokes query
again within ∆round after τ or the epoch is aborted.

2. If pℓ calls query( ) with sequence number sn at some time τ and no correct oracle triggers
newEpochStart within time ∆+ after τ , then every correct oracle commits an outcome O for se-
quence number sn within ∆+ after τ .

3. After all correct oracles have started some epoch (e, ℓ), then every correct oracle requests a switch to
a new epoch or indicates that it makes progress at least once in every interval of length ∆round+∆+.

Bounded epoch length: Let pi be the first correct oracle that commits an outcome to some sequence number sn
in an epoch e. Then no correct oracle commits any outcome for a sequence number larger than sn+ρ+1.

The remainder of this section is devoted to a proof that Algorithm 3–6 implements an outcome generation
protocol.

Lemma 7 (Integrity). Suppose an correct oracle pi commits an outcome O for sequence number sn in epoch e.
Then:

1. O = outcome(Oprev, sn, Q,B) and the leader pℓ′ of some epoch e′ ≤ e has sent Q as query in a
ROUND-START message with sequence number sn; and

2. B is a vector as follows: for a set P of at least observation-quorum(Oprev, sn, Q) −f distinct correct
oracles pj , it holds that pj has observed value B[j] in context Oprev and with sequence number sn.
Moreover, if pℓ′ is correct, then Q = query(Oprev, sn) .

Proof. Observe that for an outcome to be committed to sn, its hash must be contained in a commit-quorum
certificate for some epoch e′ and sequence number sn. Through the way such certificates are constructed, this
hash must also be contained in a prepare-quorum certificate for sn in turn. According to the protocol, every
correct oracle has obtained O from the deterministic function outcome(Oprev, sn, Q,B) , which it runs on its
own Oprev and values sn, B from a PROPOSAL message and query obtained earlier, in the same round, from a
ROUND-START message. The PROPOSAL and the ROUND-START messages have been sent by the leader pℓ′ of
epoch e′ in round sn.

Recall that Oprev reflects the value of variable outcome, specifically, its content at the time when the PRO-
POSAL message is received. This value is the same at every correct oracle because outcome is either taken
from the EPOCH-START message (in the first round within some epoch) or set to the outcome obtained in the
previous round, where it is computed by the outcome( ) function. This establishes the first property.

Furthermore, when an oracle receives a PROPOSAL message with vectors B and Σ, it ensures that B con-
tains at least observation-quorum(Oprev, sn, Q) entries with index-observations pairs (j, vj) and the corre-
sponding valid signatures σj in Σ. A correct oracle pj only issues a signature σj on an OBSERVATION message
if it has obtained vj from a call to observation(Oprev, sn, query) , where it has taken query from the ROUND-
START message from pℓ′ . The second property follows directly from these observations.
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The next two lemmas address the consistency of committed outcomes for a given sequence number.
Recall that within an epoch the protocol proceeds in rounds, which are identified by sn, and produces

one prepare-quorum certificate and one commit-quorum certificate in each round. On the other hand, two
rounds in different epochs may have the same sequence number. For an epoch e, sequence number sn, and
outcome O, a prepare-quorum certificate is a collection of BQ(n, f) valid signatures from distinct oracles on
the string PREPARE∥e∥sn∥H(O). A commit-quorum certificate has the same structure, except that the tag in
the signatures is COMMIT instead of PREPARE.

Lemma 8 (In-epoch consistency). Consider two correct oracles pi and pj in the same epoch e when they
receive PREPARE or COMMIT messages, respectively, with the same sequence number sn.

1. If pi obtains a prepare-quorum certificate (that it assigns to prepareQC) for sequence number sn and out-
come O and pj similarly obtains a prepare-quorum certificate for sequence number sn and outcome O′,
then O = O′.

2. If pi obtains a prepare-quorum certificate (that it assigns to prepareQC) for sequence number sn and
outcome O and pj obtains a commit-quorum certificate (that it assigns to commitQC) for sequence
number sn and outcome O′, then O = O′.

3. If pi obtains a commit-quorum certificate (that it assigns to commitQC) for sequence number sn and out-
come O and pj similarly obtains a commit-quorum certificate for sequence number sn and outcome O′,
then O = O′.

Proof. According to the protocol every correct oracle signs at most one PREPARE message and at most one
COMMIT message, respectively, for particular values of e and sn. Claims 1 and 3 then follow from the standard
argument about Byzantine quorums, that any two quorums of size BQ(n, f) = ⌈n+f+1

2 ⌉ overlap in at least
one correct oracle, assuming that n > 3f . Claim 2, which connects prepare-quorum certificates with commit-
quorum certificates, holds because a commit certificate requires COMMIT messages signed by multiple correct
oracles with the same sn, and Claim 1 together with the protocol implies that, for particular e and sn, there is a
unique outcome O for which correct oracles sign COMMIT messages.

Whenever an oracle pi obtains a commit-quorum certificate for sequence number sn and outcome O, then
pi computes the corresponding certified outcome CO, consisting of O and the commit-quorum certificate,
and commits CO to sn. This may occur when pi starts an epoch, in response to receiving an EPOCH-START

message, or within a round of an epoch when sufficiently many COMMIT messages have been received.

Lemma 9 (Consistency). Suppose some correct oracle pi has committed outcome O to sn and a correct ora-
cle pj has committed outcome O′ to sn. Then O = O′.

Proof. Recall that correct oracle pi commits outcome O with sequence number sn only when it possesses a
valid commit-quorum certificate QC that contains sn, O, and additionally some epoch e. Assume that pj
commits O′ with epoch e′ and sn. We distinguish three cases:

1. Case e = e′: Since both commit-quorum certificates originate in the same epoch, Lemma 8 implies that
O = O′.

2. Case e < e′: Consider the commit-quorum certificate QC ′ that has caused pj to commit O′ to sn.

It means there exist two epochs (e′ and the smaller e) for which valid commit-quorum certificates, QC ′

and QC respectively, on the same sequence number sn exist. By quorum intersection, there exists at
least one correct oracle that has signed a COMMIT that exists in both quorum certificates, which suggests
that it has collected valid prepare-quorum certificates for e′, sn, O′ and e, sn, O respectively. Again by
quorum intersection, this suggests that some correct oracle pk has signed PREPARE messages for both
e′, sn, O′ and e, sn, O. Recall that, according to the protocol, a correct oracle only signs a PREPARE

message in epoch e′ for sn after accepting a PROPOSAL message for sn or a EPOCH-START message with
a valid prepare-quorum certificate of some smaller epoch e0. In the first case, pk only accepts PROPOSAL

messages for epoch e′ so signing a PREPARE message for both e′, sn, O′ and e, sn, O contradicts our
assumption that e < e′.
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In the second case the protocol ensures that pk signs a PREPARE message in epoch e′ only for the same
sequence number sn = highSn′ as found in the prepare-quorum certificate from epoch e0. By the assump-
tion that pj commits O′ to sn in epoch e′ and Lemma 8 it follows that the prepare-quorum certificate in
epoch e0 is for an outcome O′′ = O′.

It remains to prove that O′′ = O. We prove that O′′ = O by induction on the number of epochs between
e and e0. For the base case we have that e0 = e. This suggests that there exits a prepare-quorum
certificate for sn, O′′ in the same epoch at which pi committed O to sn and, by Lemma 8, O′′ = O. For
the induction step we assume that there exists some epoch en, such that en − e = n, in which there
exists a prepare-quorum certificate for O′′ = O and sn and sn is the highest prepared sequence number
by any correct oracle in epoch en; otherwise sn would have been committed in epoch en and en = e0.
We want to prove that that if in the next epoch en+1 there also exists a prepare-quorum certificate for
O′′′ and sn, then O′′′ = O′′. The protocol guarantees that a correct oracle in epoch en+1 only signs
a PREPARE message for the same outcome and sequence number as the highest certified outcome and
sequence number in a valid EPOCH-START and by sn being the highest prepared outcome among all
correct oracles in epoch en there exists no valid EPOCH-START for en+1 without sn as the sequence
number of the highest certified outcome. Therefore, the only outcome that can be prepared in epoch
en+1 is O′′ and, thus, O′′′ = O′′ = O.

3. Case e′ > e: Since the roles of pi and pj are symmetric, the same reasoning as in the previous case
applies.

Lemma 10 (No duplication). No correct oracle commits multiple outcomes for the same sequence number.

Proof. This property follows from the protocol by observing how variables sn and committedSeqNo may
change. The former tracks the current round within the epoch and the latter contains the sequence number
of the most recent outcome that the oracle has committed. In particular, whenever the oracle commits an
outcome after receiving a commit-quorum certificate for sn, it updates committedSeqNo to sn.

One can see by, by inspection of the protocol that the sn > committedSeqNo guard is satisfied whenever
asequence number sn is committed. Since committedSeqNo is only updated when the aforementioned guard is
satisfied, committedSeqNo is strictly monotonically increasing, thus guaranteeing the property.

Lemma 11 (Completeness). If some correct oracle commits an outcome O for a sequence number sn, then for
each sequence number in {1, . . . , sn}, some correct oracle has committed an outcome.

Proof. For sequence numbers committed within one epoch by a correct oracle, the logic of the protocol imme-
diately implies the statement, as argued in the proof of the previous lemma.

Thus, we consider sequence numbers committed in different epochs. Suppose that sn′ is the largest sequence
number committed by any correct oracle within epoch e′. Then for at least f + 1 correct oracles, it holds that
their variable preparedSeqNo is at least sn′ when they enter any subsequent epoch. Furthermore, the intersection
property among Byzantine quorums implies that there cannot exist a valid prepare-quorum certificate for any
sequence number larger than sn′ + 1.

Hence, a leader of any higher epoch e′′ may include in a valid EPOCH-START message only a sequence
number highSn′ ≤ sn′ + 1. But since every correct oracle during epoch e′′ ensures that it also commits an
outcome with sequence number highSn′, unless it has committed this sequence number before, the claim of the
lemma follows: the range of sequence numbers committed by correct oracles is contiguous.

Lemma 12 (Weak totality). If a correct oracle pi commits an outcome O for sequence number sn, eventually
at least f + 1 correct oracles commit O to sn.

Proof. Consistency ensures that if some correct oracle commits an outcome O to a sequence number sn then
any other correct oracle also commits O to sn.

A correct oracle may commit an outcome O after receiving an EPOCH-START message or at the end of a
round. In both cases, there exists a commit-quorum certificate on O, but the epoch may be aborted immediately,
without any other oracle committing sn. Consider the leader p∗ℓ of some subsequent epoch. This leader may be
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faulty and try to cause that fewer than f + 1 correct oracles commit sn. However, if any correct oracle should
commit sn + 1 in this epoch, then at least BQ(n, f) oracles will also have committed sn. To see why, recall
that an EPOCH-START message must have contained a valid prepare- or commit-certificate in highQC′:

• If it is a prepare-certificate, then the protocol starts with sequence number sn = highSn′ into the first
round with phase SENT-PREPARE; should a correct oracle commit sn+1 in this epoch, then also BQ(n, f)
oracles have sent valid COMMIT messages for sn.

• If highQC′ is a commit-certificate, then every oracle compares highSn′ to its committedSeqNo variable
and commits an outcome unless it has done so earlier. The first round of the epoch starts only afterwards.

Taken together, this ensures that at least BQ(n, f) − f ≥ f + 1 correct oracles have actually committed sn.
Otherwise, if p∗ℓ does not cause any correct oracle to commit an outcome to sn + 1, the protocol will not emit
progress events and the epoch will be aborted according to the eventual succession property of the underlying
pacemaker protocol. Eventually, an epoch with a correct leader will start and some correct oracles commit
some outcome to sn + 1. Then at least f + 1 correct oracles have also committed an outcome to sn.

Lemma 13 (Liveness). Consider a time after GST when the leader pℓ of epoch e is correct:

1. Suppose leader pℓ either starts the epoch or invokes query at some time τ . Then pℓ invokes query again
within ∆round after τ or the epoch is aborted.

2. If pℓ calls query( ) with sequence number sn at some time τ and no correct oracle triggers newEpochStart
within time ∆+ after τ , then every correct oracle commits an outcome O for sequence number sn within
∆+ after τ .

3. After all correct oracles have started some epoch (e, ℓ), then every correct oracle requests a switch to a
new epoch or indicates that it makes progress at least once in every interval of length ∆round +∆+.

Proof. Observe that this lemma considers only the time after GST and assumes the leader pℓ is correct.
The first property follows directly from the protocol and the role of the timer Tround. In particular, recall

that the grace-period timer is set to a value ∆grace smaller than ∆round, according to the assumption made
before Definition 2. Whenever a round finishes, a correct leader pℓ has also indicated progress to the outcome
generation protocol. Then pℓ waits for the round timer to expire before it sends out a new ROUND-START

message. The stated bound on ∆grace ensures that a round never takes longer longer than this to complete,
assuming a point in time after GST.

To establish the second property, suppose pℓ calls query( ) at time τ . Then it also starts a new round
by sending ROUND-START messages according to the protocol. After a sequential exchange of five messages
within the round (ROUND-START, OBSERVATION, PROPOSAL, PREPARE, and COMMIT), every correct oracle
will commit some outcome. Including processing time of ϵ in each activation, this amounts to a maximal delay
of 5∆+6ϵ. Some more time may pass, however, because pℓ also enters the grace period, which accounts for an
additional delay ∆grace plus processing once (ϵ). In total, the delay after τ is at most 7ϵ+ 5∆+∆grace = ∆+.
Note that throughout this, we have assumed that no correct oracle triggers newEpochStart. In the first round, the
pacemaker’s eventual succession property guarantees that every correct oracle enters the epoch within 2∆+2ϵ
after the leader has entered it. This allows the late-joining correct oracles to commit within ∆+ after the leader
calls query( ) because they will receive the messages pertaining to the round within the same time bounds as
the early-joining oracles.

For the third property, notice that the protocol instructs every correct oracle to indicate progress whenever it
commits an outcome. The interval to consider starts whenever the correct leader pℓ starts a new round because
in the ideal situation of instantaneous message delivery, a correct oracle pi may commit some outcome and also
indicate progress immediately afterwards. Completing this round and starting the next one takes ∆round for the
leader pℓ.

Hence, oracle pi receives the next ROUND-START message from pℓ at most ∆round +∆+ ϵ < ∆round +∆+

after its most recent progress indication. If this round exceeds the maximum number of rounds in the epoch
(ρ), then pi requests a switch to a new epoch, which establishes the first part of the conclusion. Otherwise, pℓ
drives the round to completion and causes pi to commit some outcome, which takes at most ∆+ after receiving
the ROUND-START message. Putting this together implies that the subsequent progress indication may arrive
up to ∆round +∆+ after the previous one.
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Lemma 14 (Bounded epoch length). Let pi be the first correct oracle that commits an outcome to some se-
quence number sn in an epoch e. Then no correct oracle commits any outcome for a sequence number larger
than sn + ρ+ 1.

Proof. After starting epoch e, oracle pi may commit the first outcome either upon receiving an EPOCH-START

message or at the end of the first round that it completes within e. In the first case, pi has received a valid
quorum certificate from pℓ that contains e and highSn′; then pi commits the outcome to highSn′. In the second
case, the sequence number of this first round is highSn′+1. In both cases, pi sets firstSnOfEpoch = highSn′+1
and never enters a round associated to sequence number larger than firstSnOfEpoch + ρ. This implies that the
maximal number of outcomes committed within a given epoch is at most ρ+ 1.

8.3 Report attestation

The report attestation protocol, described in Algorithm 7–8, also runs continuously. It receives committedOutcome
events from the outcome generation protocol, and outputs attestedReport events, which are processed by the
transmission protocol.

committedOutcome(sn, CO): Signals that the outcome generation protocol committed a certified outcome CO
to sequence number sn and starts the attestation of CO. A certified outcome CO is a tuple that contains
an outcome O and a commit-quorum certificate.

attestedReport(a): Indicates that attested report a is to be transmitted.

Whenever it receives a committedOutcome event, the report attestation protocol converts every committed
outcome to a list of reports, gathers an attestation on each one, which consists of f + 1 signatures from unique
oracles, and emits an attestedReport event for each report to the transmission protocol. More formally, report
attestation behaves as follows.

Definition 3. A report attestation protocol satisfies these conditions:

Integrity: If some correct oracle invokes attestedReport(a) with an attested report a that contains sequence
number sn and a report r, then some correct oracle has committed an outcome CO = (O, ) to sequence
number sn, where r ∈ O.

Totality: If a correct oracle commits an outcome CO = (O, ) to sequence number sn, then for every report r
in the list returned by reports(sn, O) , every correct oracle collects an attestation for r and eventually
invokes attestedReport with an attested report that contains r.

Timely inclusion: Consider a point in time after GST when f + 1 correct oracles have committed an out-
come CO = (O, ) to sequence number sn. Then every correct oracle invokes attestedReport for each
report r in the list returned by reports(sn, O) within at most (f + 1)(∆req cert commit + ϵ) + 3(∆ + ϵ).

Lemma 15 (Integrity). Suppose a correct oracle invokes attestedReport(a) with an attested report a that con-
tains sequence number sn and a report r. Then some correct oracle has committed an outcome CO = (O, )
to sequence number sn, where r ∈ O.

Proof. If the oracle pi that invokes attestedReport(a), where a contains r, is correct and has itself committed
the outcome CO, from which r was generated, then the protocol immediately implies this property because pi
has merely stored CO locally. On the other hand, if pi has obtained CO in a CERTIFIED-COMMIT message
from some oracle, it has verified that the commit certificate within CO is valid. The completeness property of
the outcome generation protocol then implies that some correct oracle has committed CO to sn.

Lemma 16 (Totality). If a correct oracle commits an outcome CO = (O, ) to sequence number sn, then
for every report r in the list returned by reports(sn, O) , every correct oracle collects an attestation for r and
eventually invokes attestedReport with an attested report that contains r.
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Proof. By the weak totality property of the outcome generation protocol, if a correct oracle commits outcome
CO = (O, ) to sequence number sn, then eventually f + 1 correct oracles also commit CO to sn. Therefore,
at least f + 1 correct oracles send a [REPORT-SIGS, sn,Σ], where Σ is a vector such that Σ[k] is a signature on
sn and report R[k] in the vector of reports, R = reports(sn, O) .

It follows that each correct oracle receives f +1 signatures for each report R[k]. We distinguish two cases:
either a correct oracle pi has already committed the outcome O or not. The first case also implies that pi has
the outcome O available locally and can, therefore, produce the vector of reports and verify the signatures in
the REPORT-SIGS messages. Once it has collected the f + 1 respective signatures, it may produce an attested
report a from r. The oracle then invokes attestedReport(a).

In the second case, the f + 1 signatures on sn indicate that at least one correct oracle q has committed an
outcome for sn, form which pi can eventually fetch the outcome and its commit certificate via a request in a
CERTIFIED-COMMIT-REQ and receiving a response in a CERTIFIED-COMMIT message. Then pi can generate
the vector of reports R and finally invoke attestedReport(R) event.

Lemma 17 (Timely inclusion). Consider a point in time after GST when f +1 correct oracles have committed
an outcome O to sequence number sn. Then every correct oracle invokes attestedReport for each report r in
the list returned by reports(sn, O) within at most (f + 1)(∆req cert commit + ϵ) + 3(∆ + ϵ).

Proof. Assume that f + 1 correct oracles have committed outcome O to sequence number sn at some time τ .
According to the protocol, every correct oracle has therefore received and processed f + 1 REPORT-SIGS

messages at time τ +∆+ ϵ.
We distinguish again two cases: some correct oracle pi has either already committed the outcome O at

this point in time or it has not. In the first case, pi can immediately invoke attestedReport for all reports
that are produced from O and the claim holds trivially. In the second case, pi obtains a random permutation
of those oracles from which it has received a REPORT-SIGS message. Then it repeatedly schedules an event
missingOutcome after every ∆req cert commit. Whenever this event is triggered, pi picks the next oracle out of the
permutation and sends it a CERTIFIED-COMMIT-REQ message. These steps repeat until pi obtains the outcome
for sn in a CERTIFIED-COMMIT message.

In the worst case, i.e., when exactly the first f oracles of pi’s permutation are faulty, it takes at most (f+1)ϵ
for processing the missingOutcome events plus a delay of (f + 1)∆req cert commit until the (f + 1)-st request
is made. In addition, that last answer takes 2∆ + ϵ until it arrives back at pi. Oracle pi then consumes this
and invokes attestedReport with another delay of at most ϵ. In summary, the time elapsed after τ may be up to
(f + 1)(∆req cert commit + ϵ) + 3(∆ + ϵ).

Theorem 18. Algorithm 7–8 implements a report attestation protocol.

Proof. This follows directly from Lemmas 15–17.

8.4 Transmission

There is one single instance of the transmission protocol that uses two events. An attestedReport(a) event may
be invoked on the transmission protocol to receive an attested report a for transmission. The algorithm performs
various checks and if these succeed, it sends a transaction containing a to C on the blockchain.

Internally the protocol accesses the functions should-accept-finalized-report(a) and should-transmit-accepted-report(a)
of the reporting plugin with each attested report a. The protocol is defined with respect to synchronous time.
More formally, we consider two events:

attestedReport(a): Receives an attested report a for transmission.

send transaction with a: Sends a blockchain transaction to C with a.

Every attested report a = (sn, pos, , , ) is identified by a sequence number sn of the corresponding
outcome and the position pos within the vector of reports obtained from the outcome in the report attestation
protocol. When the properties below refer to an order among reports, this always corresponds to the order
given by these epoch-round tuples.

36



For reports received for transmission, this order is the same as the order of the transmission events, accord-
ing to the properties of the report generation protocol in combination with the pacemaker. However, not every
correct oracle receives the same sequence of reports for transmission.

The transmission protocol internally buffers every report and sends a corresponding transaction only af-
ter a predetermined delay. The protocol also has access to the report most recently committed by C on the
blockchain, which is typically accessed by the should-accept-attested-report(a) and should-transmit-accepted-report(a)
functions.

Definition 4. A transmission protocol satisfies for each correct oracle pi:

Liveness: Let ∆transmit be the transmission delay for an attested report a which some correct oracle pi receives.
If should-accept-finalized-report(a) returns TRUE and after time ∆transmit should-transmit-accepted-report(a)
also returns TRUE, then a blockchain transaction containing a is sent to C.

Safety: No blockchain transaction is sent with a report a unless a has been received for transmission.

Theorem 19. Algorithm 9 constitutes a transmission protocol.

Proof. The liveness and the safety properties follow directly from the implementation.

8.5 Summary

The Offchain Reporting Protocol (version 3.0) continuously collects observations made by the oracle nodes that
run the protocol, converts the observations into reports, attests these reports, and finally transmits each report
in one transaction to a smart contract running on a blockchain.

How do the formal properties of pacemaker, outcome generation, report attestation, and transmission ac-
cording to Definitions 1–4 ensure this?

Let us first consider liveness. At a very high level and according to the timing model described in Section 3,
the protocol is live only during “synchronous periods.” Formally, this is captured by assuming there is initially
one asynchronous phase, during which nodes and messages may be delayed arbitrarily and that lasts until GST.
After GST, one synchronous phase follows, in which the network, the nodes, and their clocks behave timely.

In practice, multiple asynchronous and synchronous phases alternate. But since the combination of an ini-
tial, asynchronous phase followed by a synchronous phase can again be seen as a special case of a longer asyn-
chronous phase, the model actually captures the situation of the system when it behaves again asynchronously
later. The model implies in this way that the protocol is live during every sufficiently long period where the
properties of the synchronous phase hold.

Liveness of OCR depends on the interaction between the pacemaker and outcome generation. Observe
that the eventual agreement property of the pacemaker ensures that an epoch with a correct leader is started
eventually, after GST. This epoch does not abort until the connected outcome generation indicates a leader
change because the liveness property of outcome generation ensures that it outputs a progress event within each
interval of length ∆round + ∆+, but the pacemaker would only abort the epoch if no such event occurs within
∆progress > 2∆round > ∆round +∆+.

Given that the leader is correct and that the epoch has sufficient length, the liveness property of the outcome
generation protocol ensures that all correct oracles commit an outcome at least once within every interval of
length ∆progress because ∆progress > 2∆round. This follows from the first condition of the liveness property in
Definition 2. Hence, the correct oracles running outcome generation continuously commit outcomes.

The timely inclusion property of report attestation, in turn, ensures that for each such outcome, all reports
are extracted, attested, and submitted to the transmission protocol with an attestedReport event. For an attested
report a, the liveness property of the transmission protocol then applies: If the corresponding reporting-plugin
functions determine that a should be transmitted, then a blockchain transaction containing a is sent to con-
tract C. This completes the informal argument for why OCR is live.

Now we focus on the safety of the complete protocol. Recall that reporting starts with gathering observa-
tions, proceeds to reaching consensus on outcomes, then extracts reports, and finally transmits attested reports
to a smart contract. The safety properties of the three main primitives guarantee that the transmitted reports
accurately reflect the observations as follows.
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The integrity property of outcome generation restricts all outcomes committed by the protocol to consist
of the desired number of values observed by correct oracles. The same property also ensures that whenever
the leader of the round, in which the observations are made, is correct, then the observations reflect the correct
query, as dictated by the functions of the reporting plugin. A committed outcome therefore contains cor-
rectly made observations. According to the integrity property of report attestation, no report is output in an
attestedReport event unless the report results from a committed outcome. Combined with the safety property of
the transmission protocol, this reasoning shows that the protocol only transmits reports that result from correctly
gathered observations. OCR therefore also respects safety.
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